Zjednodušenie matice:Úloha 2.4. Nájdite ortonormálnu bázu priestoru S=[(1,−1,−2,0),(1,0,1,1),(1,1,2,1)]. (Pracujeme v R4 so štandardným skalárnym súčinom.)
$\begin{pmatrix}
1 & -1&-2 &0 \\1 & 0 & 1&1 \\ 1 &1 & 2 &1 \end{pmatrix}\sim \begin{pmatrix}
1 & 0 & 1 &1 \\0 & 1 &3 &1 \\ 0 &-1 & -1 &0\ \end{pmatrix}\sim \begin{pmatrix}
1 & 0 & 1 &1 \\ 0 & 1 & 3 &1 \\ 0 & 0& 2 &1 \end{pmatrix}$
Použijeme Gram-Schmidtov proces:
$\vec{\beta _{1}}=\vec{\alpha _{1}}=\left ( 1, 0, 1, 1 \right )$
$\vec{\beta _{2}}=\vec{\alpha _{2}}$+c$\vec{\beta _{1}}=\left ( 0, 1, 3, 1 \right )+c\left ( 1,0,1,1 \right )=\left ( c,1,3+c,1+c \right )$
$$c=-\frac{\left \langle \vec{\alpha _{2}},\vec{\beta _{1}} \right \rangle}{\left \langle \vec{\beta _{1}},\vec{\beta _{1}} \right \rangle}=-\frac{4}{3}$$
$\vec{\beta _{2}}=\left ( -\frac{4}{3},1,\frac{5}{3},-\frac{1}{3} \right )$
$\vec{\beta _{3}}=\vec{\alpha _{3}}\, +\, c_{1}\vec{\beta _{1}}\, +\, c_{2}\vec{\beta _{2}}=\left ( 0, 0, 2, 1 \right )\, +\, c_{1}\left ( 1, 0, 1, 1 \right )\, +\, c_{2}\left ( -\frac{4}{3},1,\frac{5}{3},-\frac{1}{3} \right )$
$$c_{1}=-\frac{\left \langle \vec{\alpha _{3}},\vec{\beta _{1}} \right \rangle}{\left \langle \vec{\beta _{1}},\vec{\beta _{1}} \right \rangle}=-\frac{3}{3}=-1$$
$$c_{2}=-\frac{\left \langle \vec{\alpha _{3}},\vec{\beta _{2}} \right \rangle}{\left \langle \vec{\beta _{2}},\vec{\beta _{2}} \right \rangle}=-\frac{3}{\frac{51}{9}}=-\frac{9}{17}$$
$\vec{\beta _{3}}=\left ( 0,0,2,1 \right )-1\left ( 1,0,1,1 \right )-\frac{9}{17}\left (-\frac{4}{3},1,\frac{5}{3},-\frac{1}{3} \right )=\left ( -\frac{5}{17},-\frac{9}{17},\frac{2}{17},\frac{3}{17} \right )$
Aby sme dostali jednotkové vektory, použijeme normalizáciu:
$\left | \vec{\beta _{1}} \right |=\sqrt{3}$
$\left | \vec{\beta _{2}} \right |=\sqrt{\frac{51}{9}}=\frac{\sqrt{51}}{3}$
$\left | \vec{\beta _{3}} \right |=\sqrt{\frac{119}{289}}=\frac{\sqrt{119}}{17}$
$\vec{\gamma _{1}}=\frac{\vec{\beta _{1}}}{\left | \vec{\beta _{1}} \right |}=\frac{1}{\sqrt{3}}\left ( 1,0,1,1 \right )$
$\vec{\gamma _{2}}=\frac{\vec{\beta _{2}}}{\left | \vec{\beta _{2}} \right |}=\frac{3}{\sqrt{51}} \left ( -\frac{4}{3},1,\frac{5}{3},-\frac{1}{3} \right ) $
$\vec{\gamma _{3}}=\frac{\vec{\beta _{3}}}{\left | \vec{\beta _{3}} \right |}=\frac{17}{\sqrt{119}} \left ( -\frac{5}{17},-\frac{9}{17},\frac{2}{17},\frac{3}{17} \right ) $
Vektory $\vec{\gamma _{1}}$,$\vec{\gamma _{2}}$ a $\vec{\gamma _{3}}$ už tvoria ortonormálnu bázu priestoru S.
Skúška:
$ \left \langle \beta _{2},\beta _{3} \right \rangle=\left \langle \left ( -\frac{4}{3},1,\frac{5}{3},-\frac{1}{3} \right ) \left ( -\frac{5}{17},-\frac{9}{17},\frac{2}{17},\frac{3}{17} \right)\right \rangle=\frac{20}{51}-\frac{9}{17}+\frac{10}{51}-\frac{3}{17}=0$
$\left \langle \beta _{1},\beta _{3} \right \rangle=\left \langle \left ( 1,0,1,1 \right ) \left ( -\frac{5}{17},-\frac{9}{17},\frac{2}{17},\frac{3}{17} \right)\right \rangle=-\frac{5}{17}+\frac{2}{17}+\frac{3}{17}=0$
z toho vyplýva, že vektor $\vec{\beta _{3}}$ je kolmý na $\vec{\beta _{1}}$ a $\vec{\beta _{2}}$