Okej cize... $\frac{m}{n} + \frac{p}{q}\sqrt[3]{2} + \frac{x}{y}\sqrt[3]{2^2} = 0 \land m, n, p, q, x, y \in \mathbb{Z} \land (m \neq 0 \lor p \neq 0 \lor x \neq 0) \land (n, q, y \neq 0)$Úloha 5.2. Ukážte, že $1, \sqrt[3]{2}, \sqrt[3]{2^2}$ sú lineárne nezávislé vo vektorovom priestore $\mathbb{R}$ nad $\mathbb{Q}$.
... budeme sa snazit dokazat ze toto je spor
1. $\implies \frac{m}{n} + \frac{p}{q}\sqrt[3]{2} + \frac{x}{y}\sqrt[3]{2}\sqrt[3]{2} = 0$
2. $\implies \frac{m}{n} + \sqrt[3]{2} (\frac{p}{q} + \frac{x}{y}\sqrt[3]{2}) = 0$
3. $\implies \sqrt[3]{2} (\frac{p}{q} + \frac{x}{y}\sqrt[3]{2}) = \frac{-m}{n} \implies \sqrt[3]{2} (\frac{p}{q} + \frac{x}{y}\sqrt[3]{2}) \in \mathbb{Q}$
toto by platilo v dvoch pripadoch:
1) $(\frac{p}{q} + \frac{x}{y}\sqrt[3]{2}) = 0 \implies \frac{p}{q} = \frac{-x\sqrt[3]{2}}{y} \implies \frac{py}{-qx} = \sqrt[3]{2} \implies \sqrt[3]{2} \in \mathbb{Q}$ SPOR
2) $\sqrt[3]{2}(\frac{p}{q} + \frac{x}{y}\sqrt[3]{2}) \in \mathbb{Q - 0} \implies \sqrt[3]{2}(\frac{p}{q} + \frac{x}{y}\sqrt[3]{2}) = \frac{k}{l}, (k,l \in \mathbb{Z-0}) \implies (\frac{p}{q} + \frac{x}{y}\sqrt[3]{2})^3 = \frac{k^3}{2l^3} \implies \frac{p}{q} + \frac{x}{y}\sqrt[3]{2} \in \mathbb{Q}$ SPOR