S=[(2,1,1,3),(0,1,−1,1),(1,0,1,1)] upravime riadkovymi upravami na [(1,0,1,1),(0,1,−1,1)]
a teda
α1=(1,0,1,1)
α2=(0,1,−1,1)
pomocou gram-schmidta
γ1=α1=(1,0,1,1)
γ2=α2+cγ1=(0,1,−1,1)+c(1,0,1,1)=(c,1,c−1,c+1)
aby boli kolme musi platit ⟨γ1,γ2⟩=0=c+(c−1)+(c+1)=3c
Po upravach potom dostaneme c=0 a γ2=(0,1,−1,1)
Ziskali sme teda ortogonalnu bazu [γ1,γ2]
Nakoniec ju znormujeme, aby sme ziskali ortonormalnu bazu So=[β1,β2], kde γi|γi|=βi, pre i=1,2.
A tedaβ1=γ1√⟨(1,0,1,1),(1,0,1,1)⟩=γ1√3
β2=γ2√3
Dostavame teda ortonormalnu bazu Sort=[(1√3,0,1√3,1√3),(0,1√3,−1√3,1√3)]