Prednášky LS 2017/18

Moderators: Martin Sleziak, TomasRusin, Veronika Lackova, davidwilsch, jaroslav.gurican, Ludovit_Balko

Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Prednášky LS 2017/18

Post by Martin Sleziak »

V tomto vlákne budem pravidelne dopĺňať, čo sa stihlo prebrať na jednotlivých prednáškach. (Napríklad to môže byť užitočné pre ľudí, ktorí z nejakého dôvodu nemohli prísť na prednášku - aby si mohli pozrieť, čo si treba doštudovať.)

Ak budete mať otázky k niečomu, čo odznelo na prednáškach, otvorte na to nový topic. (Tento topic by som chcel zachovať pre tento jediný účel.)

Ak by ste sa chceli z nejakých dôvodov pozrieť čo sa stihlo prebrať v minulosti:
viewtopic.php?t=837
viewtopic.php?t=413
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

1. prednáška (22.2):
Grupy. Vlastne sme len stručne zopakovali veci z minulého semestra.
Podgrupy. Definícia a príklady. Kritérium podgrupy. Prienik ľubovoľného systému podgrúp je podgrupa. Podgrupa generovaná danou množinou, príklady.
Vlastne je to zhruba časť 2.1 a 2.2 z v poznámkach k prednáške. Jediné, čo som tam vynechal je príklad 2.1.4 a definícia 2.1.5 - tu sa definuje súčin grúp, k nemu sa chceme vrátiť na cvičení. Takisto som nespomenul ani lemu 2.2.11, ktorá je tiež dosť jednoduchá na to, aby zostala ako cvičenie. (Vlastne sa tam hovorí o tom, že podgrupa podgrupy je opäť podgrupa a o podobných vlastnostiach.)
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

2. prednáška (1.3):
Homomorfizmy grúp. Definícia. Pre homomorfizmus platí f(eG)=eH a f(a1)=(f(a))1, t.j. homomorfizmus zachováva neutrálny prvok a aj inverzné prvky. Príklady homomorfizmov.
izomorfizmus. Zloženie homomorfizmov/izomorfizmov, ak f je izomorfizmus, tak aj f1 je izomorfizmus.
Obraz/vzor podgrupy. Jadro a obraz.
Cyklické grupy. Definícia xn, základné vlastnosti. (Lemu 2.4.2 som nedokazoval - dôkazy by boli vlastne iba precvičením dôkazu matematickou indukciou). Rád prvku: Definícia, príklady. Izomorfizmus zachováva rád prvku.

EDIT: Túto linku som vám už párkrát v nejakých postoch spomenul. Ale keďže znovu prišla reč na pojem izomorfizmu, pridám ju ešte raz: http://msleziak.com/forum/viewtopic.php?t=495
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

3. prednáška (8.3.):
Cyklické grupy.
Konečná neprázdna podmnožina je podgrupou, ak je uzavretá vzhľadom na binárnu operáciu.
Cyklická grupa sa dá zapísať ako G=[a]={an;nZ}.
Kedy platí ak=al. Každá cyklická grupa je izomorfná s (Z,+) alebo (Zn,).
Homomorfný obraz/podgupa cyklickej grupy je cyklická. (Pri týchto dvoch výsledkoch som preskočil dôkaz. Nebudem ho ani skúšať. Takisto som preskočil vetu o tom, kedy je grupa Zm×Zn cyklická.)
Permutácie.
Definícia cyklu. Disjunktné permutácie komutujú.
Stručne som povedal, čo je rozklad na súčin disjunktných cyklov - poriadne toto tvrdenie sformulujem a k dôkazu sa dostanem až nabudúce.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

4. prednáška (15.3.):
Permutácie. Rozklad na súčin disjunktných cyklov - existencia a jednoznačnosť. (Dôkaz som nerobil detailne - skôr som iba naznačil algoritmus ktorým rozklad dostaneme a "nakreslil" prečo funguje.)
Rád permutácie. Parita permutácie. (Definícia, ako sa mení zložením s transpozíciou, ako súvisí s počtom transpozícií. Párne permutácie tvoria podgrupu Sn.)
Rozklad grupy podľa podgrupy. Súčin podmnožín grupy a niektoré jeho základné vlastnosti. (Z lemy 3.2.2 sme na dnešnej prednáške spomenuli len vlastnosti (i) až (iv).) Zadefinovali sme rozklad ľavé triedy rozkladu. Dokázali sme, že aH=bH ab1H. Ďalej sme dokázali, že ľavé triedy rozkladu G podľa H tvoria skutočne rozklad. (To isté platí pre pravé triedy.) Zatiaľ jediný konkrétny príklad bol rozklad (Z,+) podľa 3Z={3z;zZ}.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

5. prednáška (22.3.):
Lagrangeova veta. Veľkosť a počet tried rozkladu. Dôsledky Lagrangeovej vety. (Nerobil som na prednáške vetu o tom, ako vyzerajú štvorprvkové grupy - urobíme ju na cviku.)
Normálne podgrupy. Ekvivalentné podmienky pre normálne podgrupy (=kedy sa ľavý a pravý rozklad rovnajú).
Faktorová grupa. Definícia faktorovej grupy a dôkaz, že skutočne ide o grupu. Ako príklad sme si ukázali Z/3Z; ďalšie príklady budeme vidieť na cvičeniach.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

29.3. prednáška odpadla (dekanské voľno).

Faktorové grupy. Vetu o izomorfizme som dokázal na včerajšom cvičení. (Toto bola vlastne posledná vec z kapitoly o grupách, ktorá ešte nebola na prednáške.)
EDIT: Preskočil som (neúmyselne) kanonický homomorfizmus - to je dôvod, prečo som ho potom detailne urobil pri faktorových okruhoch.

7. prednáška (5.4.):
Okruhy. Základné definície a niekoľko príkladov. (Okrem pár konkrétnych príkladov - číselné okruhy, matice - sme videli aj dve konštrukcie ako z okruhov vyrábať nové okruhy, konkrétne R1×R2 a RM, kde M je ľubovoľná indexová množina.)
Podokruh. Okruh bez deliteľov nuly, obor integrity, teleso, pole.
Homomorfizmy. Definícia homomorfizmu a izomorfizmu okruhov. Niekoľko príkladov.
Ideály. Definícia ideálu. Jediné ideály v poli sú {0} a R.
Spomenul som, že jadro homomorfizmu je ideál - toto som už nestihol dokázať, ale aspoň som chcel, aby bolo vidno nejakú podobnosť medzi ideálmi a normálnymi podgrupami. (Normálne podgrupy sú presne jadrá grupových homomorfizmov. Ideály sú presne jadrá okruhových homomorfizmov.)

Pri homomorfizmoch sme sa trochu rozprávali aj o tom, že komplexné čísla sa dajú interpretovať ako matice: viewtopic.php?t=571
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

8. prednáška (12.4.): (Tento týždeň bola prednáška v stredu - v termíne cvika. Vo štvrtok sa písala písomka.)
Faktorové okruhy. Faktorový okruh - ukázali sme si, ako sa zadefinuje, že to je skutočne okruh a tiež že R/I je komutatívny (okruh s jednotkou) ak R je komutatívny (okruh s jednotkou a RI.)
Pri veľa veciach v tejto časti sme sa odvolávali na to, čo sme už predtým dokázali pre grupy. Často sme používali najmä to, kedy sa rovnajú dve triedy: a+I=b+IabI.
Kanonický homomorfimus. (Túto vec som preskočil pri grupách, tak som ju ukázal detailne teraz pri okruhoch. V poznámkach je pri okruhoch napísané iba toľko, že sa to urobí podobne.) Veta o izomorfizme.
Pre komutatívne okruhy s jednotkou platí: R/I je obor integrity I je vlastný prvoideál. R/I je obor pole I je maximálny ideál. (Nestihol som dokončiť dôsledok, ktorý z tohto vyplýva: Každý maximálny ideál je prvoideál.)
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

9. prednáška (19.4.):
Okruhy polynómov. Ešte sme sa zaoberali definíciou okruhu polynómov, t.j. zadefinovali sme ako sa polynómy sčitujú a násobia. Ukázali sme si, že polynómu skutočne tvoria okruh. (Neskôr sa ešte trochu vrátime k tomu, ako súvisia polynómy a polynomické funkcie. S tým súvisí aj dosadzovací homomorfizmus, ktorý som stručne spomenul - t.j. že do polynómov sa dá dosadzovať a všetko "funguje tak ako má".)
Veta o delení so zvyškom. Dokázali sme dve vety s názvom "veta o delení so zvyškom". Jednu pre okruh Z a jednu pre okruh polynómov F[x] nad poľom.

Toto zvyčajne robievam na cviku - budúci týždeň cvičenie odpadne, tak som sa tomu venoval na prednáške. (A aj na budúci týždeň možno odbočím na prednáške skôr k niečomu čo má bližšie k počítaniu príkladov.)
Korene polynómu, Hornerova schéma. Povedali sme si, kedy je c koreň polynómu f(x) a že to platí práve vtedy, keď xcf(x). Ukázali sme si, ako sa dá použiť Hornerova schéma na výpočet hodnoty f(c) (a teda aj zistenie či je to koreň) a tiež na nájdenie podielu pri delení polynómom tvaru (xc). (Takéto veci nájdete v poznámkach prednáške v podkapitole "Okruhy polynómov II". Sú tam aj nejaké vyriešené príklady.)
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky LS 2017/18

Post by Martin Sleziak »

10. prednáška (3.5.):
Polynómy. Rozdiel medzi polynómami a polynomickými funkciami. Dosadzovací homomorfizmus.
Deliteľnosť v okruhoch. Definícia a základné vlastnosti deliteľnosti, asociované prvky, delitele jednotky. Dva prvky sú asociované práve vtedy, keď sa líšia iba vynásobením deliteľom jednotky.
Euklidovské okruhy. Definícia, Z aj F[x] sú Euklidovské okruhy.
Okruhy hlavných ideálov. Definícia, dokázali sme, že každý euklidovský okruh je OHI.
Deliteľnosť v okruhoch hlavných ideálov. Vysvetlili sme si, že (a)(b) ba. Zadefinovali sme najväčší spoločný deliteľ. Spomenul som jeho súvis s ideálom (a,b)={ax+by;x,yR}; ešte sa k tomu vrátim na začiatku budúcej prednášky.
Post Reply