Re: Prednášky ZS 2017/18
Posted: Mon Nov 27, 2017 6:16 pm
10. prednáška (27.11.):
Operácie s maticami. Matice sa dajú sčitovať, násobiť skalárom. $M_{m,n}(F)$ s týmito operáciami tvorí vektorový priestor.
Súčin matíc. Definícia súčinu matíc a súvis so skladaním lineárnych zobrazení. Asociatívnosť a ďalšie vlastnosti (distributívnosť, násobenie jednotkovou maticou). Vyjadrenie lineárneho zobrazenia ako $f(\vec\alpha)=\vec\alpha A_f$.
Na konci sme si ešte povedali o tom, že na súčin matíc sa dá pozerať aj takto: V matici $AB$ budú lineárne kombinácie riadkov matice $B$. Matica $A$ nám vlastne hovorí, aké koeficienty mám použiť v týchto lineárnych kombináciách.
(V texte je aj vyriešený príklad na nájdenie matice lineárneho zobrazenia - úloha 5.3.1. Na prednáške sme taký príklad nerobili, budeme takéto niečo robiť na cvičení.)
Inverzná matica. inverzné zobrazenie k lineárnemu zobrazeniu je tiež lineárne.
Ako jeden z príkladov sme videli zloženie dvoch rotácií. Pri tom nám vlastne vyšli súčtové vzorce pre kosínus a sínus.
Niečo podobné sme videli už predtým pri komplexných číslach.
Nie je to náhoda - v skutočnosti sa komplexné čísla dajú zaviesť ako matice: viewtopic.php?t=571
Operácie s maticami. Matice sa dajú sčitovať, násobiť skalárom. $M_{m,n}(F)$ s týmito operáciami tvorí vektorový priestor.
Súčin matíc. Definícia súčinu matíc a súvis so skladaním lineárnych zobrazení. Asociatívnosť a ďalšie vlastnosti (distributívnosť, násobenie jednotkovou maticou). Vyjadrenie lineárneho zobrazenia ako $f(\vec\alpha)=\vec\alpha A_f$.
Na konci sme si ešte povedali o tom, že na súčin matíc sa dá pozerať aj takto: V matici $AB$ budú lineárne kombinácie riadkov matice $B$. Matica $A$ nám vlastne hovorí, aké koeficienty mám použiť v týchto lineárnych kombináciách.
(V texte je aj vyriešený príklad na nájdenie matice lineárneho zobrazenia - úloha 5.3.1. Na prednáške sme taký príklad nerobili, budeme takéto niečo robiť na cvičení.)
Inverzná matica. inverzné zobrazenie k lineárnemu zobrazeniu je tiež lineárne.
Ako jeden z príkladov sme videli zloženie dvoch rotácií. Pri tom nám vlastne vyšli súčtové vzorce pre kosínus a sínus.
Niečo podobné sme videli už predtým pri komplexných číslach.
Nie je to náhoda - v skutočnosti sa komplexné čísla dajú zaviesť ako matice: viewtopic.php?t=571