Prednášky ZS 2021/22 - teória čísel

Moderator: Martin Sleziak

Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

V tomto vlákne budem pravidelne dopĺňať, čo sa stihlo prebrať na jednotlivých prednáškach. (Napríklad to môže byť užitočné pre ľudí, ktorí z nejakého dôvodu nemohli prísť na prednášku - aby si mohli pozrieť, čo si treba doštudovať.)

Ak budete mať otázky k niečomu, čo odznelo na prednáškach, otvorte na to nový topic. (Tento topic by som chcel zachovať pre tento jediný účel.)
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22

Post by Martin Sleziak »

1. prednáška (23.9.)
Veta o delení so zvyškom. Deliteľnosť. Najväčší spoločný deliteľ, Bézoutova identita, Euklidova lema.
Ako posledné som stihol ukázať dôsledok Euklidovej lemy, ktorý hovorí, že ac, bc, (a,b)=1 abc. (T.j. ak je číslo deliteľné dvomi nesúdeliteľnými číslami, tak je deliteľné aj ich súčinom.)

Nehovorili sme o tom, ako sa dajú vyrátať čísla spĺňajúce Bézoutovu identitu - ak si potrebujete pripomenúť rozšírený Euklidov algoritmus, nejaké odkazy nájdete tu. Plánujeme sa ale k nemu na tejto prednáške ešte vrátiť (najneskôr pri lineárnych kongruenciách).
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

2. prednáška (30.9.)
Najväčší spoločný deliteľ. Ukázal som, že pre a=qb+r máme (a,b)=(b,r). (Tento vzťah je dôležitý pri rozšírenom Euklidovom algoritme.)
Tiež sme ukázali, že z (a,b)=1 a (a,c)=1 vyplýva (a,bc)=1.
Ďalšie vlastnosti z lemy 2.1.12 sme len povedali bez dôkazu. Prešli sme príklad 2.1.13 o n.s.d f(n) a f(n+1) pre f(n)=n4+n2+1.
Najmenší spoločný násobok - definícia a vzťah s n.s.d.
Preskočil som lemu 2.1.14 a dôsledok 2.1.15 - vrátime sa k nim neskôr, keď ich budeme potrebovať použiť.

Nehovorili sme o tom, ako sa dajú vyrátať čísla spĺňajúce Bézoutovu identitu - ak si potrebujete pripomenúť rozšírený Euklidov algoritmus, nejaké odkazy nájdete tu. Plánujeme sa ale k nemu na tejto prednáške ešte vrátiť (najneskôr pri lineárnych kongruenciách).

Prvočísla. Definícia, základné vlastnosti, základná veta aritmetiky (jednoznačnosť a existencia rozkladu na prvočísla). Kanonický rozklad, jeho súvis s deliteľnosťou, n.s.d, n.s.n.

Rozloženie prvočísel. Ukázali sme, že v množine prvočísel sú ľubovoľne dlhé medzery.
Plánujeme sa dostať k dôkazu, že rad prevrátených hodnôt prvočísel diverguje. Zatiaľ sme si povedali niečo o číslach bez kvadratických deliteľov, ktoré budeme používať v dôkaze.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

3. prednáška (7.10.)
Súčet prevrátených hodnôt prvočísel. Ukázali sme si tri dôkazy toho, že rad prevrátených hodnôt prvočísel diverguje.
Povedali sme si tiež niečo o číslach bez kvadratických deliteľov, ktoré sme využívali v dôkaze.
Takisto sme v dôkaze využili to, že rad 1n2 konverguje. (Čo sa dá ukázať pomerne ľahko.) Ak vás zaujíma dôkaz toho, že presná hodnota tejto sumy je π2/6, tak nejaký dôkaz je v texte prednáške (v dodatku) - je to dôkaz pomocou Fourierových radov. Existuje veľa ďalších dôkazov, nejaké odkazy nájdete tu: viewtopic.php?t=65
Jeden z dôkazov, ktorý sme robili (pochádzajúci od Paula Erdősa) sa dá nájsť v Proofs from THE BOOK - trochu som robil tejto knihe reklamu, že je vcelku zaujímavá.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

4. prednáška (14.10.)
Prvočíselná funkcia a prvočíselná veta. Sformulovali sme prvočíselnú vetu. Ako príklad jej použitia sme ukázali, že množina {p/q;p,qP} je hustá v (0,). (Nerobil som časť o funkciách li(x) a Li(x).)
Prvočíselnú vetu som povedal bez dôkazu. Tu na matfyze sa s jej dôkazom môžete stretnúť napríklad na predmete Vybrané kapitoly z teórie funkcií komplexnej premennej v magisterskom štúdiu.
Čebyševove nerovnosti. Dokázali sme Čebyševove nerovnosti, t.j. c1xlnxπ(x)c2xlnx.
Najprv som chvíľu kecal o tom, že ich síce budeme dokazovať iba pre dostatočne veľké prirodzené čísla - ale že s nejakou námahou navyše by sme to boli schopní rozšíriť na reálne čísla x2. (Keďže sa tu nejako vyskytlo to, že funkcia f(x)=xlnx je od istého miesta monotónna, tak pridám linku na nejaký príklad, kde táto funkcia tiež hrá úlohu: https://msleziak.com/forum/viewtopic.php?t=1249 - je to otázka o porovnávaní čísel xy a yx.)
Ukázali sme, že platí pxp<4x, a toto sme využili pri dôkaze jednej z nerovností.
Ukázali sme, že pre dn=[1,2,,n] platí dn2n2. Na základe toho sme vedeli dostať nerovnosť π(n)n2lgn.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

5. prednáška. (21.10.)
Bertrandov postulát. Dokázali sme Bertrandov postulát. Približne rovnaký dôkaz (s odchýlkami v niektorých detailoch) sa dá nájsť aj na Wikipédii: Proof of Bertrand's postulate.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

6. prednáška (28.10.)
Prvočísla špeciálneho tvaru a niektoré otvorené problémy. Povedali sme si niečo o Mersennových a Fermatových číslach. Ako zaujímavosť sme spomenuli aj Gauss-Wantzelovu vetu, ktorá hovorí o skonštruovateľnosti pravidelných n-uholníkov pravítkom a kružidlom a súvise s Fermatovými prvočíslami.
V súvislosti s konštrukciami pravítkom a kružidlom som spomenul, že nejaké takéto veci sa dajú odvodiť s použitím rozšírení polí, niečo k tomu je napísané aj tu: viewtopic.php?t=1532
Kongruencie. Stihli sme definíciu a základné vlastnosti kongruencií. (V podstate sme prešli časť 3.1.1 z textu.)
Pri kontrole, že M11=2111 a F5=232+1 sú zložené sme spomenuli exponentiation by squaring. (Ak si chcete pozrieť nejakú inú možnosť overenia, že F5 je zložené, pridám takúto linku: To show that Fermat number F5 is divisible by 641.)
Dokázal som aj nutné podmienky pre prvočíselné delitele Mersennových a Fermatových čísiel - tvrdenie 3.1.15 (ak q2p1, tak pq1) a vetu 3.1.16 (ak p22m+1, tak p=k2m+1+1).
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

7. prednáška. (4.11.)
Niečo som povedal o pojme kongruencia v trochu inom, ale veľmi príbuznom, zmysle. Konkrétne o kongruenciách v grupách a okruhoch, ktoré úzko súvisia s normálnymi podgrupami/ideálmi. (Máme vlastne 3 rôzne pohľady, ako sa dá pozerať na normálne podgrupy. Okrem definície sa na ne dá pozerať ako na jadrá homomorfizmov a tiež máme jedno-jednoznačnú korešpondenciu medzi grupami a kongruenciami. Podobne je to s ideálmi v okruhoch a okruhovými kongruenciami.) Toto celé vlastne súvisí s faktorizáciou (faktorovými grupami, okruhmi, a pod.)
Lineárne kongruencie. Veta o tom, kedy existuje riešenie, aký je počet riešení, ako ich nájsť. Vyriešili sme aj jeden konkrétny príklad a na ňom zopakovali aj rozšírený Euklidov algoritmus. (Ukázali sme si aj zápis Euklidovho algoritmu pomocou tabuľky. Dá sa nájsť v poznámkach k prednáške, ale je o ňom niečo aj tu na fóre.)
Čínska veta o zvyškoch. Urobili sme dva dôkazy čínskej vety o zvyškoch a ukázali sme si aj konkrétny príklad.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

8. prednáška (11.11.):
Aritmetické funkcie. Multiplikatívne a úplne multiplikatívne funkcie - definícia, základné vlastnosti. Ak f je multiplikatívna, tak aj g(n)=dnf(d) je multiplikatívna. (V dôkaze sme využili lemu 2.1.14, ktorú som pri prednášaní prvej kapitoly preskočil. Zdôvodnil som ju iba pomocou kanonického rozkladu - ak niekedy zvýši čas, tak sa vrátim k dôkazu, ktorý sa neopiera o kanonický rozklad.)
Funkcie d(n) a σ(n). Vyjadrenie týchto funkcií z kanonického rozkladu. Charakterizácia párnych dokonalých čísel. (Nerobil som časť o nepárnych dokonalých číslach. Takisto ani to, ako sa d(n) a σ(n) funkcie správajú pre veľké n.)
Eulerova funkcia. Zadefinovali sme Eulerovu funkciu φ(n) a dokázali, že je multiplikatívna.
Martin Sleziak
Posts: 5817
Joined: Mon Jan 02, 2012 5:25 pm

Re: Prednášky ZS 2021/22 - teória čísel

Post by Martin Sleziak »

9. prednáška (18.11.):
Eulerova funkcia. Vyjadrenie Eulerovej funkcie na základe kanonického rozkladu: φ(n)=ki=1(pαiipαi1i)=npn(11p).
Malá Fermatova veta. Ukázali sme si dva dôkazy malej Fermatovej vety. (Kombinatorický dôkaz a induktívny dôkaz pomocou binomickej vety.) Viacero dôkazov tejto vety je pozbieraných aj na Wikipédii: Proofs of Fermat's little theorem.
Eulerova veta. Urobili sme dva dôkazy Eulerovej vety. (Urobil som dôkaz založený na grupe redukovaných zvyškových tried.)
Ešte Eulerova funkcia. Dokázali sme (dvoma spôsobmi) identitu n=dnφ(d).
Lagrangeova veta. Sformulovali sme Lagrangeovu vetu a ukázali, že vlastne vyplýva z toho, čo vieme o počte koreňov polynómu v poli: https://msleziak.com/forum/viewtopic.php?t=1349#p4076
Wilsonova veta. Ukázali sme Wilsonovu vetu - jeden dôkaz bol založený na Lagrangeovej vete, druhý využíval multiplikatívnu grupu poľa Zp. (Nerobil som kombinatorický dôkaz.)
Post Reply