Latex - mnoziny, mnozinove operacie

Pomoc - v prípade problémov s používaním fóra píšte sem

Moderator: Martin Sleziak

Post Reply
Martin Sleziak
Posts: 5686
Joined: Mon Jan 02, 2012 5:25 pm

Latex - mnoziny, mnozinove operacie

Post by Martin Sleziak »

Pri mnozinovych zatvorkach treba pouzivat backslash. Patri sa oznacuje \in

$\{x\cdot y; y\in H\}$, $\mathbb N=\{0,1,2,3,\dots\}$

Code: Select all

\{x\cdot y; y\in H\}, \mathbb N=\{0,1,2,3,\dots\}
Podmnozina

$A\subset B$, $A\subseteq B$, $A\subsetneq B$

Code: Select all

A\subset B, A\subseteq B, A\subsetneq B
Zakladne operacie s mnozinami

$A\cup B$, $A\cap B$ $A\setminus B$

Code: Select all

A\cup B, A\cap B A\setminus B
Zjednotenie a prienik mozeme robit aj so sytemami mnozin:

$\bigcup_{i=1}^\infty \bigcap_{j=1}^\infty A_{ij}$

Code: Select all

\bigcup_{i=1}^\infty \bigcap_{j=1}^\infty A_{ij}
Pokial chceme rozsah nad a pod znak prieniku a zjednotenia
$\bigcup\limits_{i=1}^\infty \bigcap\limits_{j=1}^\infty A_{ij}$

Code: Select all

\bigcup\limits_{i=1}^\infty \bigcap\limits_{j=1}^\infty A_{ij}
Na uzavrete intervaly sa pouziva langle rangle, nie < a >. (Niektori ludia preferuju hranate zatvorky na oznacenie intervalu - $[0,1]$
$(0,1)\subseteq (0,1\rangle \subseteq \langle 0,1\rangle$

Code: Select all

(0,1)\subseteq (0,1\rangle \subseteq \langle 0,1\rangle
V suvislosti s mnozinami (napriklad pri definiciach mnozinovych operacii), sa vyskytuju aj kvantifikatory a logicke spojky; tie najdete tu.

Pri oznacovani kardinality sa stretnete s pismenom alef:
$\aleph_0 < \aleph_1 \le 2^{\aleph_0}$

Code: Select all

\aleph_0 < \aleph_1 \le 2^{\aleph_0}
Alebo tiez s kardinalitou kontinua:
$2^{\aleph_0}=\mathfrak c$

Code: Select all

$2^{\aleph_0}=\mathfrak c$
Martin Sleziak
Posts: 5686
Joined: Mon Jan 02, 2012 5:25 pm

Zobrazenia

Post by Martin Sleziak »

Code: Select all

$f\colon X\to Y$ alebo $f:X\to Y$
$f\colon X\to Y$ alebo $f:X\to Y$

Code: Select all

$x\mapsto x^2$
$x\mapsto x^2$

Code: Select all

$g\circ f(x)=g(f(x))$ a $h\circ (g\circ f)=(h\circ g)\circ f$
$g\circ f(x)=g(f(x))$ a $h\circ (g\circ f)=(h\circ g)\circ f$
Post Reply