Exercise 19.4
Posted: Wed Apr 10, 2013 8:06 pm
Exercise 19.4. In Example 20.14 of the next chapter we shall show that there exist irreducible characters $\chi$ and $\psi$ of $A_5$ which take the following values:
$$
\begin{array}{c|ccccc}
& 1 & (123) & (12)(34) & (12345) & (13452) \\\hline
\chi & 5 & -1 & 1 & 0 & 0 \\
\phi & 3 & 0 & -1 & (1+\sqrt5)/2 & (1-\sqrt5)/2
\end{array}
$$
Calculate the values of $\chi_S$, $\chi_A$, $\phi_S$ and $\phi_A$. Express these characters as linear combinations of the irreducible characters $\psi_1,\dots,\psi_5$ of $A_5$ which are given in Example 20.14.
Ireducibilné charaktery pre $A_5$ sú
$$
\begin{array}{c|ccccc}
g_i & 1 & (123) & (12)(34) & (12345) & (13452) \\
|C_G(g_i)| & 60 & 3 & 4 & 5 & 5\\\hline
\psi_1 & 1 & 1 & 1 & 1 & 1 \\
\psi_2 & 4 & 1 & 0 &-1 &-1 \\
\psi_3 & 5 &-1 & 1 & 0 & 0 \\
\psi_4 & 3 & 0 &-1 & \alpha & \beta \\
\psi_5 & 3 & 0 &-1 & \beta & \alpha
\end{array}
$$
kde $\alpha=(1+\sqrt5)/2$, $\beta=(1-\sqrt5)/2$.
Pre charakter $\chi$ chceme vyrátať $\chi_S(g)=\frac{\chi^2(g)+\chi(g^2)}2$ a $\chi_A(g)=\frac{\chi^2(g)-\chi(g^2)}2$.
$$
\begin{array}{c|ccccc}
g & 1 & (123) & (12)(34) & (12345) & (13452) \\\hline
\chi(g) & 5 & -1 & 1 & 0 & 0 \\
\chi^2(g) & 25 & 1 & 1 & 0 & 0 \\
\chi(g^2) & 5 & -1 & 5 & 0 & 0 \\
\chi_S(g) & 15 & 0 & 3 & 0 & 0 \\
\chi_A(g) & 10 & 1 & -2 & 0 & 0
\end{array}
$$
Pre tieto charaktery platí $\chi_S=\psi_1+\psi_2+2\psi_3$ a $\chi_A=\psi_2+\psi_4+\psi_5$. (Vidíme, že $\chi^2$ obsahuje iba charaktery $\psi_1$, $\psi_2$ a $\psi_3$. Podľa vety 19.10 teda $\chi^3$ už musí obsahovať $\psi_4$ a $\psi_5$.)
Teraz chceme zrátať $\phi_S(g)=\frac{\phi^2(g)+\phi(g^2)}2$ a $\phi_A(g)=\frac{\phi^2(g)-\phi(g^2)}2$.
Môžeme si všimnúť, že $\alpha$ aj $\beta$ spĺňajú rovnicu $x^2-x-1=0$, teda pre ne platí $x^2=x+1$. A tiež z Vietových vzťahov máme $\alpha+\beta=1$ a $\alpha\beta=-1$.
$$
\begin{array}{c|ccccc}
g & 1 & (123) & (12)(34) & (12345) & (13452) \\\hline
\phi(g) & 3 & 0 & -1 & \alpha & \beta \\
\phi^2(g) & 9 & 0 & 1 & \alpha+1 & \beta+1 \\
\phi(g^2) & 3 & 0 & 3 & \beta & \alpha \\
\phi_S(g) & 6 & 0 & 2 & 1 & 1 \\
\phi_A(g) & 3 & 0 &-1 & \alpha & \beta
\end{array}
$$
V poslednom riadku sme počítali $\alpha-\beta=\sqrt5$ a $\frac{1+\alpha-\beta}2=\frac{1+\sqrt5}2=\alpha$; podobná rovnosť platí pre $\beta$.
Charaktery, ktoré sme dostali, sa dajú vyjadriť ako $\phi_S=\psi_1+\psi_3$ a $\phi_A=\psi_4$.
$$
\begin{array}{c|ccccc}
& 1 & (123) & (12)(34) & (12345) & (13452) \\\hline
\chi & 5 & -1 & 1 & 0 & 0 \\
\phi & 3 & 0 & -1 & (1+\sqrt5)/2 & (1-\sqrt5)/2
\end{array}
$$
Calculate the values of $\chi_S$, $\chi_A$, $\phi_S$ and $\phi_A$. Express these characters as linear combinations of the irreducible characters $\psi_1,\dots,\psi_5$ of $A_5$ which are given in Example 20.14.
Ireducibilné charaktery pre $A_5$ sú
$$
\begin{array}{c|ccccc}
g_i & 1 & (123) & (12)(34) & (12345) & (13452) \\
|C_G(g_i)| & 60 & 3 & 4 & 5 & 5\\\hline
\psi_1 & 1 & 1 & 1 & 1 & 1 \\
\psi_2 & 4 & 1 & 0 &-1 &-1 \\
\psi_3 & 5 &-1 & 1 & 0 & 0 \\
\psi_4 & 3 & 0 &-1 & \alpha & \beta \\
\psi_5 & 3 & 0 &-1 & \beta & \alpha
\end{array}
$$
kde $\alpha=(1+\sqrt5)/2$, $\beta=(1-\sqrt5)/2$.
Pre charakter $\chi$ chceme vyrátať $\chi_S(g)=\frac{\chi^2(g)+\chi(g^2)}2$ a $\chi_A(g)=\frac{\chi^2(g)-\chi(g^2)}2$.
$$
\begin{array}{c|ccccc}
g & 1 & (123) & (12)(34) & (12345) & (13452) \\\hline
\chi(g) & 5 & -1 & 1 & 0 & 0 \\
\chi^2(g) & 25 & 1 & 1 & 0 & 0 \\
\chi(g^2) & 5 & -1 & 5 & 0 & 0 \\
\chi_S(g) & 15 & 0 & 3 & 0 & 0 \\
\chi_A(g) & 10 & 1 & -2 & 0 & 0
\end{array}
$$
Pre tieto charaktery platí $\chi_S=\psi_1+\psi_2+2\psi_3$ a $\chi_A=\psi_2+\psi_4+\psi_5$. (Vidíme, že $\chi^2$ obsahuje iba charaktery $\psi_1$, $\psi_2$ a $\psi_3$. Podľa vety 19.10 teda $\chi^3$ už musí obsahovať $\psi_4$ a $\psi_5$.)
Teraz chceme zrátať $\phi_S(g)=\frac{\phi^2(g)+\phi(g^2)}2$ a $\phi_A(g)=\frac{\phi^2(g)-\phi(g^2)}2$.
Môžeme si všimnúť, že $\alpha$ aj $\beta$ spĺňajú rovnicu $x^2-x-1=0$, teda pre ne platí $x^2=x+1$. A tiež z Vietových vzťahov máme $\alpha+\beta=1$ a $\alpha\beta=-1$.
$$
\begin{array}{c|ccccc}
g & 1 & (123) & (12)(34) & (12345) & (13452) \\\hline
\phi(g) & 3 & 0 & -1 & \alpha & \beta \\
\phi^2(g) & 9 & 0 & 1 & \alpha+1 & \beta+1 \\
\phi(g^2) & 3 & 0 & 3 & \beta & \alpha \\
\phi_S(g) & 6 & 0 & 2 & 1 & 1 \\
\phi_A(g) & 3 & 0 &-1 & \alpha & \beta
\end{array}
$$
V poslednom riadku sme počítali $\alpha-\beta=\sqrt5$ a $\frac{1+\alpha-\beta}2=\frac{1+\sqrt5}2=\alpha$; podobná rovnosť platí pre $\beta$.
Charaktery, ktoré sme dostali, sa dajú vyjadriť ako $\phi_S=\psi_1+\psi_3$ a $\phi_A=\psi_4$.