Riešenie úlohy 3.1: Kanonický tvar kvadratickej formy

Moderators: Martin Sleziak, TomasRusin, Veronika Lackova, davidwilsch, jaroslav.gurican, Ludovit_Balko

Post Reply
martin.gabris
Posts: 3
Joined: Thu Feb 14, 2013 8:53 pm

Riešenie úlohy 3.1: Kanonický tvar kvadratickej formy

Post by martin.gabris »

Úloha 3.1. Upravte na diagonálny (prípadne kanonický) tvar a nájdite príslušnú transformáciu premenných. Zapíšte aj maticové rovnosti, ktoré z výsledkov vyplývajú: $x_1x_2+x_2x_3$.
Riešenie:
Koeficienty kvadratickej formy si zapíšeme do matice $A$ a postupnými riadkovými a stĺpcovými úpravami ju upravíme do kanonického tvaru, pričom si značíme riadkové operácie na jednotkovej matici.

$$
A=
\begin{pmatrix} 0 & 1/2 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1/2 \\ 0 & 3/2 & 1/2 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 3/2 \\ 0 & 3/2 & 2 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 3/2 \\ 0 & 0 & -1/4 \end{pmatrix} \sim
$$
$$
\sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/4 \end{pmatrix} \sim
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}
=D
$$

Prislúchajúce riadkové operácie urobené na jednotkovej matici:

$$
I=
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \sim
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \sim
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & -1/2 & 1/2 \end{pmatrix} \sim
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}
= P
$$

Teda matica $D$ sa dá vyjadriť ako $PAP^T$ z $A$ pomocou úprav zapísaných v matici $P$. Výpočtom môžeme overiť, že rovnosť $D=PAP^T$ naozaj platí, napríklad pomocou wolfram-u.
Martin Sleziak
Posts: 5689
Joined: Mon Jan 02, 2012 5:25 pm

Re: Riešenie úlohy 3.1: Kanonický tvar kvadratickej formy

Post by Martin Sleziak »

Riešenie je ok, značím si 1 bod.
Post Reply