Úloha 9.2. Delitelnost polynomov nad $\mathbb C[x]$
Posted: Sun May 18, 2014 3:38 pm
Úloha 9.2. Dokážte, že $x^2+x+1\mid x^{3m}+x^{3n+1}+x^{3p+2}$ v $\mathbb C[x]$.
$f(x) = x^2+x+1$
$g(x) = x^{3m}+x^{3n+1}+x^{3p+2}$
Prv najdeme korene $f(x)$ pomocou diskriminantu:
$\frac{-1 \pm \sqrt{1-4.1}}{2} = \frac{-1 \pm i \sqrt{3} }{2} = \frac{-1}{2} \pm i \frac{ \sqrt{3} }{2} = \cos(\frac{2}{3} \pi) \pm i \sin(\frac{2}{3} \pi)$
Takze mame dva korene:
$x_1 = \cos(\varphi) + i \sin(\varphi)$
$x_2 = \cos(\varphi) - i \sin(\varphi)$
Pricom $\varphi = \frac{2}{3} \pi$.
Cize $f(x) = (x - x_1)(x - x_2)$
Keby $f(x) \mid g(x)$, tak potom sa $g(x)$ da zapisat ako:
$g(x) = f(x)h(x) + 0 = (x - x_1)(x - x_2) h(x)$
Pricom $h(x) \in \mathbb C[x]$. Teda potom korene $x_1,x_2$ su aj korenmi $g(x)$.
Overme to:
$g(x_1) = x_1^{3m}+x_1^{3n+1}+x_1^{3p+2}$
Teraz vyuzijeme vlastnost komp. c.: pri nasobeni sa agumenty scitavaju a abs. nasobia
$\cos(3m\varphi) + i \sin(3m\varphi) + \cos(\varphi(3n+1)) + i \sin(\varphi(3n+1)) +\cos(\varphi(3p+2)) + i \sin(\varphi(3p+2)) =$
$= \cos(2\pi m) + i \sin(2\pi m) + \cos(2n\pi + \frac{2}{3} \pi) + i \sin(2n\pi + \frac{2}{3} \pi) +\cos(2\pi p + \frac{4}{3} \pi) + i \sin(2\pi p + \frac{4}{3} \pi) =$
$= 1 + i \cdot 0 - \frac{1}{2} + i \frac{\sqrt{3}}{2} - \frac{1}{2} - i \frac{\sqrt{3}}{2} = 0$
Cize $x_1$ je koren. Komplexne zdruzene k $x_1$ je $x_2$, cize aj $x_2$ musi byt koren. Cim sme dokazali, ze $f(x)$ sa da zapisat ako $g(x)h(x)$.
$f(x) = x^2+x+1$
$g(x) = x^{3m}+x^{3n+1}+x^{3p+2}$
Prv najdeme korene $f(x)$ pomocou diskriminantu:
$\frac{-1 \pm \sqrt{1-4.1}}{2} = \frac{-1 \pm i \sqrt{3} }{2} = \frac{-1}{2} \pm i \frac{ \sqrt{3} }{2} = \cos(\frac{2}{3} \pi) \pm i \sin(\frac{2}{3} \pi)$
Takze mame dva korene:
$x_1 = \cos(\varphi) + i \sin(\varphi)$
$x_2 = \cos(\varphi) - i \sin(\varphi)$
Pricom $\varphi = \frac{2}{3} \pi$.
Cize $f(x) = (x - x_1)(x - x_2)$
Keby $f(x) \mid g(x)$, tak potom sa $g(x)$ da zapisat ako:
$g(x) = f(x)h(x) + 0 = (x - x_1)(x - x_2) h(x)$
Pricom $h(x) \in \mathbb C[x]$. Teda potom korene $x_1,x_2$ su aj korenmi $g(x)$.
Overme to:
$g(x_1) = x_1^{3m}+x_1^{3n+1}+x_1^{3p+2}$
Teraz vyuzijeme vlastnost komp. c.: pri nasobeni sa agumenty scitavaju a abs. nasobia
$\cos(3m\varphi) + i \sin(3m\varphi) + \cos(\varphi(3n+1)) + i \sin(\varphi(3n+1)) +\cos(\varphi(3p+2)) + i \sin(\varphi(3p+2)) =$
$= \cos(2\pi m) + i \sin(2\pi m) + \cos(2n\pi + \frac{2}{3} \pi) + i \sin(2n\pi + \frac{2}{3} \pi) +\cos(2\pi p + \frac{4}{3} \pi) + i \sin(2\pi p + \frac{4}{3} \pi) =$
$= 1 + i \cdot 0 - \frac{1}{2} + i \frac{\sqrt{3}}{2} - \frac{1}{2} - i \frac{\sqrt{3}}{2} = 0$
Cize $x_1$ je koren. Komplexne zdruzene k $x_1$ je $x_2$, cize aj $x_2$ musi byt koren. Cim sme dokazali, ze $f(x)$ sa da zapisat ako $g(x)h(x)$.