Hilbertov hotel
Posted: Wed Jun 18, 2014 6:37 pm
Na jednom z cvičení padla otázka: "Čo z toho, čo sa tu učíme, sa dá povedať študentom na strednej škole?"
Chcel by som napísať niečo o Hilbertovom hoteli, čo je v podstate niečo, čo sme sa učili; len povedané iným jazykom a dá sa to určite porozprávať aj stredoškolákom.
Rozhodne som k tomu chcel napísať nejaký pokec na fórum už skôr - zhruba vtedy, keď ste sa na to pýtali. Nejako sa mi nepodarilo nájsť si čas. Snáď je zmysluplné dať to tu aj teraz. Možno si to niekto pozrie aj napriek tomu, že už má ten predmet za sebou. A ak nie, bude to tu pre ľudí, čo to budú mať zapísané v budúcich rokoch.
Sú aj iné témy z tejto prednášky, ktoré by nemali mať problém zvládnuť stredoškoláci. Napríklad dôkaz, že reálnych čísel je viac ako prirodzených pomocou desiatkového zápisu a diagonálnej metódy. (V aktuálnej verzii prednášok je to príklad 4.5.4. A je to v podstate ten istý dôkaz, ktorý sme predtým robili s dyadickými zápismi. Akurát my sme sa snažili aj dokázať, že každé reálne číslo má jednoznačne určený dyadický zápis a zdôvodniť, kedy je jednoznačný. Pre stredoškolákov to dokazovať zrejme netreba, s desiatkovým zápisom sa proste pracuje ako s prirodzenou reprezentáciou reálnych čísel.) Možno je pre stredoškolákov zvládnuteľná aj ďalšia aplikácia diagonálnej metódy, kde ukážeme, že $2^a>a$, čiže pre každú nekonečnú množinu existuje ešte nejaká ďalšia množina, ktorá je od nej väčšia.
Všeobecne pojem porovnávania veľkosti množín je zrozumiteľný (rovnako veľké = dajú sa popárovať = existuje bijekcia); aj keď nepoužijete slová ako "bijekcia" alebo nezadefinujete pojem "mohutnosti množiny". Dá sa to robiť menej formálne.
Ak si dobre pamätám, tak aj v knihe Peter Bero: Matematici, ja a ty sa vyskytli nejaké veci týkajúce sa vlastne kardinality; hoci je to kniha, ktorú kľudne môžu čítať základoškoláci. (Myslím, že sa tam spomínal napríklad Galileov paradox a aj Aristotelov paradox. Nemám však momentálne prístup k tej knihe, takže to nemôžem skontrolovať. Keďže ste absolvovali pomerne veľa didaktických predmetov, tak meno Peter Bero by vám mohlo byť známe.)
Každopádne, nedá mi nepovedať to, že pre vás ako pre budúcich učiteľov môže byť občas užitočné vedieť aj niečo navyše, nie len to, čo budete učiť na strednej škole. (Teda to, že ste sa na vysokej škole naučili nejakú vec, ktorú nemôžete vysvetliť stredoškolákom, neznamená to, že je pre vás úplne zbytočná. A aspoň do istej miery by ste snáď mohli veriť ľuďom, ktorí zostavovali študijný program a zaradili do neho veci, ktoré považujú za užitočné a zaujímavé pre učiteľov.) Tým nijako netvrdím to, že by znalosti z predmetu teória množín boli úplne nevyhnutné pre každého, kto chce učiť matematiku - to by bol samozrejme nezmysel. Ale osobne si myslím, že veci, ktoré sme prebrali po koniec kapitoly o kardinalite, neboli až také zložité a dajú sa považovať za súčasť všeobecného rozhľadu človeka, ktorý sa zaoberá matematikou.
Chcel by som napísať niečo o Hilbertovom hoteli, čo je v podstate niečo, čo sme sa učili; len povedané iným jazykom a dá sa to určite porozprávať aj stredoškolákom.
Rozhodne som k tomu chcel napísať nejaký pokec na fórum už skôr - zhruba vtedy, keď ste sa na to pýtali. Nejako sa mi nepodarilo nájsť si čas. Snáď je zmysluplné dať to tu aj teraz. Možno si to niekto pozrie aj napriek tomu, že už má ten predmet za sebou. A ak nie, bude to tu pre ľudí, čo to budú mať zapísané v budúcich rokoch.
Sú aj iné témy z tejto prednášky, ktoré by nemali mať problém zvládnuť stredoškoláci. Napríklad dôkaz, že reálnych čísel je viac ako prirodzených pomocou desiatkového zápisu a diagonálnej metódy. (V aktuálnej verzii prednášok je to príklad 4.5.4. A je to v podstate ten istý dôkaz, ktorý sme predtým robili s dyadickými zápismi. Akurát my sme sa snažili aj dokázať, že každé reálne číslo má jednoznačne určený dyadický zápis a zdôvodniť, kedy je jednoznačný. Pre stredoškolákov to dokazovať zrejme netreba, s desiatkovým zápisom sa proste pracuje ako s prirodzenou reprezentáciou reálnych čísel.) Možno je pre stredoškolákov zvládnuteľná aj ďalšia aplikácia diagonálnej metódy, kde ukážeme, že $2^a>a$, čiže pre každú nekonečnú množinu existuje ešte nejaká ďalšia množina, ktorá je od nej väčšia.
Všeobecne pojem porovnávania veľkosti množín je zrozumiteľný (rovnako veľké = dajú sa popárovať = existuje bijekcia); aj keď nepoužijete slová ako "bijekcia" alebo nezadefinujete pojem "mohutnosti množiny". Dá sa to robiť menej formálne.
Ak si dobre pamätám, tak aj v knihe Peter Bero: Matematici, ja a ty sa vyskytli nejaké veci týkajúce sa vlastne kardinality; hoci je to kniha, ktorú kľudne môžu čítať základoškoláci. (Myslím, že sa tam spomínal napríklad Galileov paradox a aj Aristotelov paradox. Nemám však momentálne prístup k tej knihe, takže to nemôžem skontrolovať. Keďže ste absolvovali pomerne veľa didaktických predmetov, tak meno Peter Bero by vám mohlo byť známe.)
Každopádne, nedá mi nepovedať to, že pre vás ako pre budúcich učiteľov môže byť občas užitočné vedieť aj niečo navyše, nie len to, čo budete učiť na strednej škole. (Teda to, že ste sa na vysokej škole naučili nejakú vec, ktorú nemôžete vysvetliť stredoškolákom, neznamená to, že je pre vás úplne zbytočná. A aspoň do istej miery by ste snáď mohli veriť ľuďom, ktorí zostavovali študijný program a zaradili do neho veci, ktoré považujú za užitočné a zaujímavé pre učiteľov.) Tým nijako netvrdím to, že by znalosti z predmetu teória množín boli úplne nevyhnutné pre každého, kto chce učiť matematiku - to by bol samozrejme nezmysel. Ale osobne si myslím, že veci, ktoré sme prebrali po koniec kapitoly o kardinalite, neboli až také zložité a dajú sa považovať za súčasť všeobecného rozhľadu človeka, ktorý sa zaoberá matematikou.