LaTeX - zakladne prikazy
Posted: Sun Jan 15, 2012 4:27 pm
Indexy a exponenty
Pokial exponent ci index obsahuje viac znakov, dam ho do kuceravych zatvoriek: {}
$p=x_1^2+x_2^2$
$|A|=\sum_{\pi\in S_n} (-1)^{i(\pi)} a_{1,\pi(1)} a_{2,\pi(2)} \dots a_{n,\pi(n)}$
$a_nx^n+\dots+a_1x+a_0$
Mnozinove zatvorky
Kedze {} maju v TeXu specialny vyznam, ak ich chcem pouzit ako mnozinove zatvorky, musim pridat backslash.
$\{x\in\mathbb R; x^2\le\sqrt2\}$
Sumy
Niekedy vyzera lepsie, ked sumacny rozsah pisem nad/pod sumu
$\sum\limits_{k=1}^n \binom nk = 2^n$
$\prod\limits_{k=1}^\infty e^{-1/k} \ge \prod\limits_{k=1}^\infty \left(1-\frac1k\right)$
Nerovnosti
$a<b\le c$
$a>b\ge c$
Zlomky
$\frac12 < \frac23$
$\frac{a^3-b^3}{a-b} = a^2+ab+b^2$
Odmocniny
$\sqrt{16}=4$
$\sqrt[3]8=2$
Pokial exponent ci index obsahuje viac znakov, dam ho do kuceravych zatvoriek: {}
Code: Select all
$p=x_1^2+x_2^2$
$|A|=\sum_{\pi\in S_n} (-1)^{i(\pi)} a_{1,\pi(1)} a_{2,\pi(2)} \dots a_{n,\pi(n)}$
$a_nx^n+\dots+a_1x+a_0$
$|A|=\sum_{\pi\in S_n} (-1)^{i(\pi)} a_{1,\pi(1)} a_{2,\pi(2)} \dots a_{n,\pi(n)}$
$a_nx^n+\dots+a_1x+a_0$
Mnozinove zatvorky
Kedze {} maju v TeXu specialny vyznam, ak ich chcem pouzit ako mnozinove zatvorky, musim pridat backslash.
Code: Select all
\{x\in\mathbb R; x^2\le\sqrt2\}
Sumy
Niekedy vyzera lepsie, ked sumacny rozsah pisem nad/pod sumu
Code: Select all
$\sum\limits_{k=1}^n \binom nk = 2^n$
$\prod\limits_{k=1}^\infty e^{-1/k} \ge \prod\limits_{k=1}^\infty \left(1-\frac1k\right)$
$\prod\limits_{k=1}^\infty e^{-1/k} \ge \prod\limits_{k=1}^\infty \left(1-\frac1k\right)$
Nerovnosti
Code: Select all
$a<b\le c$
$a>b\ge c$
$a<b\le c$
$a>b\ge c$
Zlomky
$\frac12 < \frac23$
$\frac{a^3-b^3}{a-b} = a^2+ab+b^2$
Code: Select all
$\frac12 < \frac23$
$\frac{a^3-b^3}{a-b} = a^2+ab+b^2$
Code: Select all
$\sqrt{16}=4$
$\sqrt[3]8=2$
$\sqrt[3]8=2$