Let $A\subset\mathbb R$ be measurable, $\lambda$ stands for Lebesgue measure on $\mathbb R$. We say that $0$ is Lebesgue right density point of $A$ if
$$d^+(A,0) = \lim_{h\to0^+} \frac{\lambda(A\cap[0,h])}h=1.$$
Note that
$$
\frac{\lambda(A\cap[0,\frac1{n+1}])}{\frac1{n+1}}\cdot\frac{n}{n+1} \le \frac{\lambda(A\cap[0,h])}h \le \frac{\lambda(A\cap[0,\frac1n])}{\frac1n}\cdot\frac{n+1}n.
$$
Therefore $d^+(A,0)=1$ if and only if
$$\lim\limits_{n\to\infty} n\lambda\left(A\cap[0,1/n]\right)=1.$$
Let $a_n=\lambda(A\cap[1/(n+1),1/n])$. Then
$$\lambda(A\cap[0,1/m]) = \sum_{k=n}^\infty \lambda(A\cap[1/(k+1),1/k])=\sum_{k=n}^\infty a_k.$$
The intuition is the following. If $d^+(A,0)=1$, then $\lambda(A\cap[1/(n+1),1/n])$ should be close to the length $1/(n(n+1))$ of $[1/(n+1),1/n]$ if $n$ tends to $\infty$, and thus $a_n/(1/n-1/(n+1))=n(n+1)a_n$ should tend to $1$.
In fact the following holds.
Theorem 1. $d^+(A,0)=1$ if and only if $n(n+1)a_n$ tends statistically to $1$.
Theorem 1 justifies the following definition. Let $\mathcal I$ be an ideal of subsets of $\mathbb N$. We say that $x$ is an $\mathcal I$-right-density point of a measurable set $A$, in symbols $d_+^{\mathcal I}(A,x)=1$, if $n(n+1)\lambda(A\cap[x+\frac1{n+1},x+\frac1n])$ tends to $1$ with respect to $\mathcal I$. Theorem 1 says that $d_+^{{\mathcal I}_d}(A,x)=1$ $\Longleftrightarrow$ $d_+(A,x)$ where $\mathcal I_d$ stands for the density zero ideal. By $\mathrm{Fin}$ we denote the ideal of finite subsets of $\mathbb N$. Note that if $\mathcal I \subset \mathcal J$, then $d_+^{\mathcal I}(A,x)=1$ implies $d_+^{\mathcal J}(A,x)=1$. The following is the strengthening of Lebesgue's one-dimensional density theorem. We mimic the proof of Lebesgue's density theorem presented by Faure in [1].
Theorem 2. Let $A\subseteq\mathbb R$ be measurable. Then $\lambda(\{x\in A \colon d_+^{\mathrm{Fin}}(A,x)\ne1\})=0$.
We will discuss the result of Wilczynski [2] where the other connection between Lebesgue density points and the statistical convergence is given there.
[1] C. A. Faure, A short proof of Lebesgue's density theorem. Amer. Math. Monthly 109 (2002), no. 2, 194-196.
JSTOR,
Google
[2] W. Wilczynski. Statistical density points. Folia Math. 11 (2014), no. 1, 59-62.
http://fm.math.uni.lodz.pl/artykuly/11/wilczynski.pdf