uloha na zamyslenie z cvicenia
Posted: Tue Dec 13, 2016 9:15 pm
zadanie: Nech $S$, $T$, $T'$ sú podpriestory v. p. $V$. Predpokladajme, že $S \cap T = S \cap T'$, $S+T = S+T'$ a $T \subseteq T'$. Dokážte, že $T=T'$.
riešenie:
$T \subseteq T'$ vieme zo zadania
nech $\alpha$ je lubovolny vektor z $T'$, potom:
$\alpha \in T' \implies \alpha \in S+T' \implies \alpha \in S+T$
t.j. $( \exists \beta \in S, \gamma \in T) (\alpha = \beta + \gamma)$
$\alpha - \gamma \in S$, lebo $\beta \in S$
$\alpha - \gamma \in T'$, lebo $\alpha \in T'$ a $\gamma \in T \subseteq T'$
$\implies \alpha - \gamma \in S \cap T' = S \cap T$
$\alpha - \gamma = \delta \in T$
$\alpha = \delta + \gamma \implies \alpha \in T$ (pretože $\delta \in T$ a $\gamma \in T$)
Z toho vyplýva, že $T' \subseteq T$ a teda $T = T'$
riešenie:
$T \subseteq T'$ vieme zo zadania
nech $\alpha$ je lubovolny vektor z $T'$, potom:
$\alpha \in T' \implies \alpha \in S+T' \implies \alpha \in S+T$
t.j. $( \exists \beta \in S, \gamma \in T) (\alpha = \beta + \gamma)$
$\alpha - \gamma \in S$, lebo $\beta \in S$
$\alpha - \gamma \in T'$, lebo $\alpha \in T'$ a $\gamma \in T \subseteq T'$
$\implies \alpha - \gamma \in S \cap T' = S \cap T$
$\alpha - \gamma = \delta \in T$
$\alpha = \delta + \gamma \implies \alpha \in T$ (pretože $\delta \in T$ a $\gamma \in T$)
Z toho vyplýva, že $T' \subseteq T$ a teda $T = T'$