Kurzweil-Henstockov a Perronov integrál
Posted: Wed Dec 14, 2016 4:14 pm
Keďže sme sa začali trochu serióznejšie rozprávať o tom, že by sa mohli prebrať na seminári tieto typy integrálov, tak som vytvoril samostatný topic.
Ale zatiaľ som sem len skopíroval veci odtiaľto: viewtopic.php?f=41&t=924
Ale zatiaľ som sem len skopíroval veci odtiaľto: viewtopic.php?f=41&t=924
Martin Sleziak wrote:Dnes padol návrh, že jedna z možných tém by bola Kurzweil-Henstockov integrál (ktorý je známy aj pod veľa ďalšími menami).
Bolo by však treba vybrať, podľa akého textu by sme túto tému prebrali.
Zdá sa, že nejaký prístup k nemu je aj v kapitole 22 knihy ktorú čítame. (Prinajmenšom podľa poznámok na konci tejto kapitoly - skopíroval som ich nižšie.) Ale podľa zbežného pohľadu sa zdá, že používajú nejakú pomerne neštandardnú definíciu.Ak niekto z nás nájde staré poznámky, keď sa kedysi tento integrál už na seminári prof. Šaláta preberal, tak sa možno dá pozrieť, podľa čoho sa to študovalo vtedy.Spoiler:
Prípadne by sa možno hodili niektoré zo zdrojov uvedených tu: Looking for an accessible explanation of Henstock–Kurzweil (gauge) integral. Aj tento post vymenúva nejaké zaujímavé knihy - ktoré sa týkajú rôznych integrálov, nie iba tohoto typu integrálu.
EDIT: Renáta Masárová našla v starých poznámkach, že na seminári sa kedysi čítal tento článok:
Charles Swartz and Brian S. Thomson: More on the Fundamental Theorem of Calculus, The American Mathematical Monthly, Vol. 95, No. 7, pp. 644-648. http://classicalrealanalysis.info/documents/2323311.pdf http://www.jstor.org/stable/2323311