Topological spaces

September 18, 2023

Topological spaces

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Definition of topology

Definition

Let X be a set. A system $\mathcal{T} \subseteq \mathcal{P}(X)$ is called a *topology* on the set X if:

(O1). $\emptyset, X \in \mathcal{T}$.

- (O2). If $A, B \in \mathcal{T}$, then also $A \cap B \in \mathcal{T}$.
- (O3). if $A_i \in \mathcal{T}$ for each $i \in I$, then als $\bigcup_{i \in I} A_i \in \mathcal{T}$.

If \mathcal{T} is a topology on X, then the pair (X, \mathcal{T}) is called a *topological space*. The sets belonging to \mathcal{T} are called *open sets* in the space (X, \mathcal{T}) .

Definition of topology

- There are various ways to describe a topology this axiomatization is relatively simple.
- One possible viewpoint is that we are "measuring" distance but using bigger and smaller neighborhood rather than using numbers.

Topological spaces

Definition of topology

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Examples of topologies

Sierpiński space

Topological spaces

< A > < B >

Topology given by a metric

$$B(a, r) = \{x \in X; d(x, a) < r\}$$

- A point a ∈ U is called an *interior point* of a set U if there is a real number r > 0 such that B(a, r) ⊆ U.
- If each point of a set U is its interior point we say that U is open in the metric space (X, d).

 (X, \mathcal{T}_d)

Closed sets

Definition

Let X be a topological space and $C \subseteq X$.

A subset *C* is called a *closed set*, it the complement $X \setminus C$ is an open set.

If C is both closed and open in X, we say that it is a *clopen set*.

Sets are not doors. They can be open, closed, both, or neither. Neznámy autor

A (1) < A (1) </p>

Closed sets

Proposition

Let (X, \mathcal{T}) be a topological space. Let C be the system of all closed sets in X. Then the following holds: (C1). $\emptyset, X \in C$. (C2). Ak $A, B \in C$ tak, $A \cup B \in C$. (C3). Ak $A_i \in C$ pre všetky $i \in I$ (pričom $I \neq \emptyset$), tak aj $\bigcap_{i \in I} A_i \in C$.

Closed sets

Proposition

Let X be an arbitrary set. Let $C \subseteq \mathcal{P}(X)$ be a system of sets satisfying the conditions (C1), (C2), (C3). Then

$$\mathcal{T} = \{X \setminus C; C \in \mathcal{C}\}$$

is a topology on X.

Moreover, the closed sets in (X, \mathcal{T}) are precisely the sets belonging to C.

Topological spaces

Definition of topology

Cofinite and cocountable topology

$$\mathcal{T}_{cof} = \{\emptyset\} \cup \{X \setminus F; F \text{ is a finite subset of } X\}$$

$$\mathcal{T}_{coc} = \{ \emptyset \} \cup \{ X \setminus F; F ext{ is a countable subset of } X \}$$

Topological spaces

・ロト ・回ト ・ヨト

< ≣ >

æ

Bases

Definition

Let (X, \mathcal{T}) be a topological space. A system $\mathcal{B} \subseteq \mathcal{T}$ is called a *basis for the topology* \mathcal{T} if every open set U is a union of some system of sets from \mathcal{B} .

$$(\forall U \in \mathcal{T})(\exists S \subseteq B)U = \bigcup S$$

B ⊆ T, i.e., every basic set is open
Equivalent condition: For any x ∈ X and any open neighborhood U ∋ x there exists B ∈ B such that x ∈ B ⊆ U.

$$(\forall x \in U \in \mathcal{T})(\exists B \in \mathcal{B})x \in B \subseteq U$$

A (1) > (1) > (1)

Bases

Theorem If \mathcal{B} is a basis for some topology on X then: (B1). \mathcal{B} covers X, i.e., $\bigcup \mathcal{B} = X$.

(B2). If $B_{1,2} \in \mathcal{B}$ both contain a point $x \in X$ then there exists $B \in \mathcal{B}$ with $x \in B \subseteq B_1 \cap B_2$.

 $(\forall x \in X)[x \in B_{1,2} \in \mathcal{B} \Rightarrow (\exists B \in \mathcal{B})x \in B \subseteq B_1 \cap B_2]$

Conversely, if $\mathcal{B} \subseteq \mathcal{P}(X)$ stafisfies (B1) and (B2) then the set of all unions of subsystems of \mathcal{B} gives a topology \mathcal{T} on X.

$$\mathcal{T} = \{igcup \mathcal{C}; \mathcal{C} \subseteq \mathcal{B}\}$$

Moreover, \mathcal{B} is a basis for \mathcal{T} .

Examples of bases

•
$$\mathcal{B}_{disc} = \{\{x\}; x \in X\}$$

• $\mathcal{B}_{ind} = \{X\}$

Topological spaces

æ

Topology given by a metric

$$B(a, r) = \{x \in X; d(x, a) < r\}$$
$$\mathcal{B} = \{B(a, r); a \in X, r \in \mathbb{R}, r > 0\}$$
Notation: \mathcal{T}_d Another basis: $\mathcal{B}' = \{B(a, r); a \in X, r \in \mathbb{Q}, r > 0\}$

Topological spaces

< ロ > < 部 > < き > < き > <</p>

æ

Sorgenfrey line

Sorgenfrey line (Lower limit topology) $X = \mathbb{R}$ s topológiou danou bázou

$$\mathcal{B} = \{ \langle a, b \rangle; a, b \in \mathbb{R}, a < b \}.$$

Notation: \mathbb{R}_{l} or \mathcal{T}_{l} . $\diamond \langle a, b \rangle$ is clopen $\diamond \mathcal{T}_{e} \subseteq \mathcal{T}_{l}$

∢∄ ▶ ∢ ≣ ▶

글 > 글

Subbasis

Definition

Nech (X, \mathcal{T}) je topológia a $S \subseteq \mathcal{T}$. Hovoríme, že S subbáza topológie \mathcal{T} , ak

 $\mathcal{B} = \{ \bigcap \mathcal{F}; \mathcal{F} \subseteq \mathcal{S}, \mathcal{F} \text{ je neprázdna konečná množina} \}$

tvorí bázu topológie ${\cal T}$.

T.j. ${\mathcal S}$ je subbáza práve vtedy, keď prieniky konečne veľa množín z ${\mathcal S}$ tvoria bázu.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Subbasis

Theorem

If S is a subbasis for some topology on X then: (S1). S covers X, i.e.,

 $\bigcup \mathcal{S} = X.$

Conversely, if $S \subseteq \mathcal{P}(X)$ fulfills (S1) then the set of finite intersections of finite subsystems of S, i.e.,

 $\mathcal{B} = \{ \bigcap \mathcal{F}; \mathcal{F} \subseteq \mathcal{S}, \mathcal{F} \text{ is a non-empty finite set} \}$

is a basis for a topology on X.

Neighborhood

Definition

Let (X, \mathcal{T}) be a topological space and $x \in X$. a subset $N \subseteq X$ is called a *neighborhood of the point* x if there exists an open set U with $x \in U \subseteq N$. If N is moreover an open set, we say that it is an open neighborhood of x.

We will denote by \mathcal{N}_x the system of all neighborhoods of x, and by \mathcal{O}_x the system of all open neighborhoods of x.

Neighborhood basis

Definition

Let (X, \mathcal{T}) be a topological space and $x \in X$. Let $\mathcal{B}_x \subseteq \mathcal{N}_x$, i.e., \mathcal{B}_x is a system consisting of some neighborhoods of x. We say that \mathcal{B}_x is a *neighborhood basis at the point* x if, for any open set Ucontaining x, there exists $B \in \mathcal{B}_x$ with $B \subseteq U$.

$$(\forall U \in \mathcal{O}_x)(\exists B \in \mathcal{B}_x)x \in B \subseteq U$$

- Open balls are a neighborhood basis for \mathcal{T}_d .
- Closed intervals in \mathbb{R} (closed balls in \mathbb{R}^n).

Neighborhood basis

Neighborhood basis

Theorem

Let (X, \mathcal{T}) be a topological space and $\mathcal{B} \subseteq \mathcal{T}$ (i.e., \mathcal{B} is a system of open sets). Then \mathcal{B} is a base for X if and only if $\mathcal{B}_x = \{B \in \mathcal{B}; x \in B\}$ is a neighborhood basis at x for each $x \in X$.

< A > < A > >

Sorgenfrey line

Example

$$\mathcal{B} = \{ \langle a, b \rangle; a, b \in \mathbb{R}, a < b \}$$

$$egin{aligned} \mathcal{B}_x &= \{ \langle a, b
angle; a, b \in \mathbb{R}; a \leq x < b \} \ \mathcal{B}'_x &= \{ \langle x, b
angle; b \in \mathbb{R}; x < b \} \ \mathcal{B}''_x &= \{ \langle x, b
angle; b \in \mathbb{Q}; x < b \} \end{aligned}$$

If x is irrational, the system

$$\mathcal{C}_x = \{ \langle \mathsf{a}, \mathsf{b}
angle; \mathsf{a}, \mathsf{b} \in \mathbb{Q}; \mathsf{a} \leq x < \mathsf{b} \}$$

is not a neighborhood basis at x.

- 4 印 ト - 4 三 ト

< ≣ >

æ

Neighborhood basis

Theorem

Let (X, \mathcal{T}) be a topological spaces.

For every $x \in X$, let \mathcal{B}_x be a neighborhood basis at $x \in X$ consisting only of open sets, i.e., $\mathcal{B}_x \subseteq \mathcal{T}$. Then the following holds:

(BO1). For each
$$B \in \mathcal{B}_x$$
 we have $x \in B$.

(BO2). If $U_{1,2} \in \mathcal{B}_x$ then there exists $U \in \mathcal{B}_x$ such that $U \subseteq U_1 \cap U_2$.

(BO3). if $y \in U \in \mathcal{B}_x$ then there exists $V \in \mathcal{B}_y$ such that $V \subseteq U$.

- 4 同 ト - 4 日 ト

Neighborhood basis

Theorem

Conversely, suppose that for every point $x \in X$ we have a system $\mathcal{B}_x \subseteq \mathcal{P}(X)$ and that these systems fulfill the conditions (BO1)–(BO3). Then

$$\mathcal{B} = \bigcup_{x \in X} \mathcal{B}_x$$

fulfills the conditions (B1) and (B2) and thus it is a basis for a topology \mathcal{T} on the set X. Moreover, \mathcal{B}_x is a neighborhood basis at x for this topology \mathcal{T} .

- 4 間 ト 4 画 ト 4 画 ト

Moore plane

Example

On $\Gamma = \{(x_1, x_2) \in \mathbb{R}^2; x_2 \ge 0\}$ at the points $b = (b_1, b_2)$ with $b_2 > 0$ we take the basis given by the Euclidean metric, i.e., $B(b, r) = \{(x_1, x_2) \in \Gamma; ||x-y||_2 = \sqrt{(x_1 - b_1)^2 + (x_2 - b_2)^2} < r\}$, and for the points where the second coordinate is zero"

$$\mathcal{B}_{(b_1,0)} = \{(b_1,0)\} \cup \{\sqrt{(x_1 - b_1)^2 + (x_2 - r)^2} < r\}$$

《曰》《曰》 《曰》 《曰》 《曰》

Neighborhood basis

Moore plane

Figure: Bázové množiny v Mooreovej rovine.

Topological spaces

・ロト ・日下・ ・ ヨト

-≣->

Closure

Definition

Let (X,\mathcal{T}) be topological space and $A\subseteq X$. Then the set

$$\overline{A} = \bigcap \{C; A \subseteq C \subseteq X; C \text{ je uzavretá podmnožina } X\}$$
 (1)

is called the *closure of the set A*.

Sometimes we use the notation cl(A) or $cl_{\mathcal{T}}(A)$ – for example, if we want to work with closures of the same set in two different topologies.

Closure

Proposition

Nech (X, \mathcal{T}) je topologický priestor. (i) The set \overline{A} is closed for any $A \subseteq X$. (ii) A set $A \subseteq X$ is closed iff $A = \overline{A}$. (iii) If $A \subseteq C \subseteq X$ and C is a closed set then $\overline{A} \subseteq C$.

Proposition

Let (X, \mathcal{T}) be a topological space and A, B be subsets of X. If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$.

$$A \subseteq B \qquad \Rightarrow \qquad \overline{A} \subseteq \overline{B} \tag{2}$$

Closure

Theorem

For the closure of sets in a topological space X we have:

(CL1). $\overline{\emptyset} = \emptyset$; (CL2). $A \subseteq \overline{A}$; (CL3). $\overline{A \cup B} = \overline{A} \cup \overline{B}$ (CL4). $\overline{(\overline{A})} = \overline{A}$ Conversely, if an operator $\overline{}: \mathcal{P}(X) \to \mathcal{P}(X)$ fulfills the conditions (CL1)-(CL4) and if we define

$$\mathcal{C} = \{A \subseteq X; \overline{A} = A\},\$$

the the system C fulfills (C1)–(C3). (Thus the sets such that $A = \overline{A}$ are exactly the closed set of the topology \mathcal{T} obtained by taking the complements of the sets from C.)

(4日) (日)

포 > 문

Closure

- Description "from above" and "from below"
- In metric spaces: Closure = limits of sequences.
- In topological spaces: Closure = limits of nets.

Closure

Proposition

Let (X, \mathcal{T}) be a topological space, $x \in X$, $A \subseteq X$. Then $x \in \overline{A}$ if and only if every neighborhood U of the point x intersects A.

$$x \in \overline{A} \qquad \Leftrightarrow \qquad (\forall U \in \mathcal{N}_x)(A \cap U \neq \emptyset)$$

・ロト ・日ト ・ヨト

- < ≣ >

æ

Locally finite systems

Definition

Let (X, \mathcal{T}) be a topological space and S by a system of subsets of X. The system S is called *locally finite* if, for every point $x \in X$, there exists a neighborhood $U \ni x$ which intersects only finitely many sets from S. (I.e., the set $\{S \in S; S \cap U \neq \emptyset\}$ is finite.)

Locally finite systems

Theorem Let $\{A_i; i \in I\}$ be a locally finite system

$$\overline{\bigcup_{i\in I}A_i}=\bigcup_{i\in I}\overline{A_i}.$$

Corollary

Union of a locally finite system of closed sets if a closed set.

- 4 回 2 4 回 2 4 回 2 4

3

Interior of a set

Definition

Nech (X, \mathcal{T}) je topologický priestor a $A \subseteq X$. Potom *vnútro množiny* A definujeme ako

$$Int A = \bigcup \{ U \subseteq A; U \text{ je otvorená v } X \}.$$

Proposition

Nech (X, \mathcal{T}) je topologický priestor, A je podmnožina X. Potom:

$$\overline{A} = X \setminus \operatorname{Int}(X \setminus A)$$
$$\operatorname{Int} A = X \setminus \overline{X \setminus A}$$

A (1) < A (1) </p>

Interior of a set

Proposition

Let (X, \mathcal{T}) be a topological space and $A, B \subseteq X$. Then we have:

- (i) If $A \subseteq B$ then $\operatorname{Int} A \subseteq \operatorname{Int} B$.
- (ii) Int $A \subseteq A$
- (iii) $Int(A \cap B) = Int A \cap Int B$
- (iv) The set Int A is open. For any open set $U \subseteq X$ we have Int U = U.
- (v) Int(Int A) = Int A

Dense sets

Definition

Let (X, \mathcal{T}) be a topological space. A subset $D \subseteq X$ is *dense* in X if $\overline{D} = X$, i.e., the closure of D is the whole space.

An equivalent characterization is that D intersects every non-empty open set.

$$(\forall U \in \mathcal{T} \setminus \{\emptyset\}) D \cap U \neq \emptyset$$

We can use elements from some basis ${\cal B}$ instead the whole topology ${\cal T}$ in this condition.

Dense sets

Proposition

Let (X, \mathcal{T}) be a topological space, $U, D \subseteq X$. If D is a dense set and U is an open set then

$\overline{U\cap D}=\overline{U}.$

Topological spaces

3

∢ ≣ ≯

- - 4 🗇 🕨 - 4 🖻 🕨