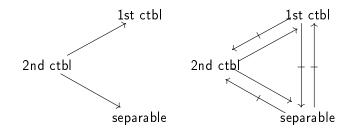
Separable spaces and countability axioms


September 30, 2024

Separable spaces and countability axioms

回 ト イヨト イヨト

Separability and countability axioms

Separability and countability axioms

First countable	A countable neighborhood base at each point
Second countable	A countable base for the topology
Separable	Countable dense subset

Separable spaces and countability axioms

∃ >

.⊒ .⊳

First countable spaces

Definition

Let (X, \mathcal{T}) be a topological space. The space X is first countable, if every point $x \in X$ has a countable neighborhood base \mathcal{B}_x .

- Metric spaces: $\mathcal{B}_x = \{B(x, r); r \in \mathbb{Q}\}$
- ► Sorgenfrey line ℝ_I

3

Second countable spaces

Second countable spaces

Definition

A topological space is second countable if there exists a countable base ${\mathcal B}$ for X

Example: $(\mathbb{R}, \mathcal{T}_e)$

Second countable spaces

Proposition

Every first countable space is second countable

- (X, \mathcal{T}_{disc}) is second countable $\Leftrightarrow |X| \leq \aleph_0$.
- Sorgenfrey line $\mathbb{R}_I = (\mathbb{R}, \mathcal{T}_I)$ is not second countable.

伺下 イヨト イヨト

Separable spaces

Definition

A topological space (X, \mathcal{T}) is *separable*, if there exists a countable subset $A \subseteq X$ such that $\overline{A} = X$.

- ► The discrete space (X, T_{disc}) is separable ⇔ X is a countable set.
- The real line with the usual topology $(\mathbb{R}, \mathcal{T}_e)$

(4月) (4日) (4日)

Separable spaces

Proposition

Every second countable space is separable.

The converse implication is not true: Sorgenfrey line, Moore plane

伺下 イヨト イヨト

æ

Separable metrizable spaces

Proposition

If X is a separable metrizable space, then X is second countable. In the other words, for a metrizable space X we have: X is separable iff X is second countable.

Separable spaces

- The spaces ℓ_p , 1 are separable.
- The spaces c and c₀ with the sup-norm are separable.
- Priestor ℓ_{∞} with the sup-norm is not separable.

(4月) (4日) (4日)