October 14, 2024

Continuity

ヘロト 人間 ト 人間 ト 人間 ト

æ

Continuity at a point

イロト イヨト イヨト イヨト

3

Continuity at a point

Metric spaces: $f: (X, d) \rightarrow (Y, d')$

$$(\forall \varepsilon > 0)(\exists \delta > 0)d(x, a) < \delta \Rightarrow d'(f(x), f(a)) < \varepsilon.$$

Continuity

Continuity at a point

Definition

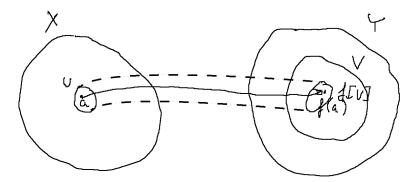
Let $f: X \to Y$ be a function, X and Y be topological spaces. Let $a \in X$. The function f is continuous at the point a if, for any open neighborhood V of the point f(a), there exists an open neighborhood U of the point a such that $f[U] \subseteq V$.

$$(\forall V \in \mathcal{O}_{f(a)})(\exists U \in \mathcal{O}_a)f[U] \subseteq V$$
 (1)

Continuity at a point

æ

Continuity at a point



Continuity

Figure: Definition of continuity at a point

Continuity at a point

Continuity at a point

It suffices to use a neighborhood base:

$$(\forall V \in \mathcal{B}_{f(a)})(\exists U \in \mathcal{B}_{a})f[U] \subseteq V$$

Image: A math the second se

< ≣⇒

æ

Preimages of open sets

Definition

Let X, Y be topological spaces. A function $f: X \rightarrow Y$ is *continuous*, if it is continuous at every point $a \in X$.

Theorem

Let X, Y be topological spaces and $f: X \to Y$ be a function. The function f is continuous if for every open subset U of the space Y the preimage $f^{-1}[U]$ is open in X.

$$(\forall U \in \mathcal{T}_Y) f^{-1}[U] \in \mathcal{T}_X$$

Global continuity

< ロ > < 同 > < 三 >

- < ≣ > -

æ

Examples of continuous functions

▶ $f: (X, \mathcal{T}_{disc}) \to (Y, \mathcal{T}_Y)$ ▶ $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_{ind})$ ▶ constant function ▶ $id_X: (X, \mathcal{T}_1) \to (\mathcal{T}_2) \Leftrightarrow \mathcal{T}_2 \subseteq \mathcal{T}_1$

Preimages of basic sets

Proposition

Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological spaces, let \mathcal{B} be a base for \mathcal{T}_Y , let \mathcal{S} be a subbase \mathcal{T}_Y . Let $f : X \to Y$. The following conditions are equivalent:

(i) f is continuous.

(ii) For each $V \in \mathcal{B}$ the preimage $f^{-1}[V]$ is an open set.

(iii) For each $W \in S$ the preimage $f^{-1}[W]$ is an open set.

Example

$$f^{-1}[(-\infty,b)]$$
 and $f^{-1}[(a,\infty)]$ for $a,b\in\mathbb{R}.$

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-∢≣≯

Composition of continuous functions

Theorem

Let $f: X \to Y$, $g: Y \to Z$ be continuous functions between topological spaces. Then the composition $g \circ f: X \to Z$ is continuous, too.

$$g \circ f^{-1}[U] = f^{-1}[g^{-1}[U]]$$

Image of the closure

Proposition

Let $f: X \to Y$ be a function for a topological space X to the topological space Y. The following are equivalent:

(i) The function f is continuous.

- (ii) For every closed subset C of the space Y, the preimage $f^{-1}[C]$ is a closed subset of X.
- (iii) For every $A \subseteq X$ we have $f[\overline{A}] \subseteq \overline{f[A]}$.

Global continuity

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Image of the closure

$$C = \overline{f[A]}$$

$$f^{-1}[C] = f^{-1}[\overline{f[A]}]$$

$$A \subseteq f^{-1}[f[A]] \subseteq f^{-1}[\overline{f[A]}]$$

$$\overline{A} \subseteq f^{-1}[\overline{f[A]}]$$

$$f[\overline{A}] \subseteq \overline{f[A]}$$

Continuity

Global continuity

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Image of the closure

$$A = f^{-1}[C]$$

$$f[\overline{A}] \subseteq \overline{f[A]} = \overline{f[f^{-1}[C]]} \subseteq \overline{C} = C$$

$$f^{-1}[C] \subseteq \overline{f^{-1}[C]} \subseteq f^{-1}[C]$$

$$f^{-1}[C] = \overline{f^{-1}[C]}$$

Continuity

Image of a dense set

Corollary

Let X, Y be topological spaces and $f: X \to Y$ be a continuous surjective function. If D is a dense subset of X then f[D] is a dense subset of Y.

Definition

We say that Y is a *continuous image* of a space X if there exists a continuous surjective function $f: X \to Y$.

Corollary

Continuous image of a separable space is separable.