Subspaces

October 16, 2024

[Subspaces](#page-16-0)

K ロ ⊁ K 伊 ⊁ K 店

→ 高下

 $\,$ $\,$

E

 299

≣

重

Topological constructions

- ▶ subspace
- ▶ quotient space
- ▶ topological sum
- ▶ product space
- \blacktriangleright Generalization: Initial and final topology.

4日 ト

ð **II**

م ۵ ه

Definition of a subspace

Definition

Let (X, \mathcal{T}) be a topological space and $S \subseteq X$. If we define

$$
\mathcal{T}_S = \{U \cap S; U \in \mathcal{T}\},\
$$

then \mathcal{T}_S is a topology on S. The pair (S, \mathcal{T}_S) is called a *subspace* of the topological space X. The topology T_S is called the *relative topology* If S is an open subset of X, we say that it is an open subspace. Similarly, S is called a *closed subspace* if S is a closed subset.

[Subspaces](#page-2-0) and the subspaces of the state of the state of the Subspaces of the Subspaces

Base, closure, interior

- \triangleright base $\mathcal{B}_S = \{U \cap S; U \in \mathcal{B}\}\$
- ▶ neighborhood base $\mathcal{B}'_x = \{B \cap S; B \in \mathcal{B}_x\}$
- ▶ closedness: $C = C' \cap X$.
- \blacktriangleright cl_S(A) = cl_X(A) ∩ S
- \triangleright Int_S(A) = Int_X(A) ∩ S

4 0 8

●▶

K 로)

重

つくい

≣

∍

Subspace

Example

- ▶ subspace of a discrete space
- ▶ subspace of an indiscrete space
- ▶ subspace of a metric space

$$
B_{S}(x,r) = \{y \in S; d(x,y) < r\} = B(x,r) \cap S.
$$

4日 ト

Subspace

Proposition

If S is a subspace of T and T is a subspace of X then S is a subspace of X.

If S, T are subspaces of X and $S \subseteq T$ then also S is a subpace of $T₁$

 \leftarrow \Box

Subspace

Proposition

Let $f: X \rightarrow Y$ be a function. Let S be a subspace of the space X and let T be a subspace of Y . Moreover, let as assume that $f[S] \subseteq T$. Then: a) If f : $X \to Y$ is continuous then the restriction $f|_S : S \to Y$ is continuous, too.

b) The function $f: X \to Y$ is continuous if and only if $f: X \to T$ is continuous.

Definition of an embedding

Definition

A map i: $S \rightarrow X$ between the topological spaces S and X is called an embedding if $i: S \rightarrow i[S]$ is a homeomorphism between S and the subspace *i*[S] of the space X. An embedding is denoted as $i: S \hookrightarrow X$

つくい

Embedding

Proposition

Let $S \subseteq X$, where (S, \mathcal{T}_S) and (X, \mathcal{T}_X) are topological spaces. Let us define i: $S \to X$ by $i(x) = x$ for any $x \in S$. Then we have: (S, \mathcal{T}_S) is a subspace of (X, \mathcal{T}) if and only if i: $(S, \mathcal{T}_S) \hookrightarrow (X, \mathcal{T}_X)$ is an embedding.

Embedding

Proposition

If f : $X \hookrightarrow Y$ and $g: Y \hookrightarrow Z$ are embeddings, then the composition $g \circ f : X \to Z$ is an embedding, too.

Corollary

If $f: X \hookrightarrow Y$ is an embedding and S is a subspace of X then the restriction $f|_S : S \to Y$ as well.

Embedding

Proposition

Let X be a topological space and S be a subspace of S . Let i_S : $S \hookrightarrow X$ be the embedding of S into X. Let Y be a topological space and $g: Y \rightarrow S$ je zobrazenie. Potom g je spojité práve vtedy, keď e \circ g je spojité.

∽ດເ

Hereditary properties

Definition

A topological property P (or a class of topological spaces) is called hereditary if, for any space with the property P , every its subspace has the property P, too.

We use the name *open (closed) hereditary* property if an analogous claim holds for open (closed) subspaces.

∽≏ດ

Countability axioms

- \blacktriangleright Any subspace of a first countable space is first countable.
- ▶ Any subspace of a second countable space is second countable.
- ▶ Every subspace of a separable space is separable. (Moore plane is an example of a space which is not hereditarily separable.)

造っ E

店 × \prec

Moore plane

K ロ ▶ K (伊) - K

∽ດເ

Cover

Definition

Let X be a topological space. A family $\mathcal{C} = \{\mathsf{C}_i; i \in I\}$ of subsets of the set X is called a *cover* of the space X if

$$
\bigcup \mathcal{S} = \bigcup_{i \in I} A_i = X.
$$

If every element of the cover C is an open set then C is an open cover.

If every element of C is a closed set then C is a *closed cover.*

If C is a locally finite system then C is a *locally finite cover.*

Open cover

Proposition

Let $\{U_i; i \in I\}$ be an open cover of a topological space X. Let $f: X \rightarrow Y$ be a map into a topological space Y. If the restriction $f|_{U_i}: U_i \to Y$ is continuous for every $i \in I$ then the map f is also continuous.

$$
f^{-1}[V] = \bigcup_{i \in I} (f^{-1}[V] \cap U_i) = \bigcup_{i \in I} (f|_{U_i})^{-1}[V]
$$

Locally finite closed cover

Proposition

Let X, Y be topological spaces and $f: X \rightarrow Y$ be a map. Let $\{\mathsf C_i; i\in I\}$ be a locally finite closed cover of X. If the restriction $f|_{C_i}: C_i \to Y$ is continuous for every $i \in I$ then the map f is also continuous.

$$
f^{-1}[C] = \bigcup_{i \in I} (f^{-1}[C] \cap C_i) = \bigcup_{i \in I} (f|_{C_i})^{-1}[C]
$$