Subspaces

October 16, 2024

Subspaces

æ

500

< ≣⇒

æ

A¶ ▶

Topological constructions

- subspace
- quotient space
- topological sum
- product space
- Generalization: Initial and final topology.

Definition of a subspace

Definition

Let (X,\mathcal{T}) be a topological space and $S\subseteq X$. If we define

$$\mathcal{T}_{\mathcal{S}} = \{ U \cap S; U \in \mathcal{T} \},\$$

then \mathcal{T}_S is a topology on S.

The pair (S, \mathcal{T}_S) is called a *subspace* of the topological space X. The topology \mathcal{T}_S is called the *relative topology* If S is an open subset of X, we say that it is an *open subspace*. Similarly, S is called a *closed subspace* if S is a closed subset.

Subspaces

A (1) < A (1) < A (1) </p>

★ 문 → 문

Base, closure, interior

- ▶ base $\mathcal{B}_S = \{U \cap S; U \in \mathcal{B}\}$
- neighborhood base $\mathcal{B}'_x = \{B \cap S; B \in \mathcal{B}_x\}$
- closedness: $C = C' \cap X$.
- ► $cl_S(A) = cl_X(A) \cap S$
- $Int_{\mathcal{S}}(A) = Int_{\mathcal{X}}(A) \cap S$

A¶ ▶

≣ >

Subspace

Example

- subspace of a discrete space
- subspace of an indiscrete space
- subspace of a metric space

$$B_{S}(x,r) = \{y \in S; d(x,y) < r\} = B(x,r) \cap S.$$

Subspace

Proposition

If S is a subspace of T and T is a subspace of X then S is a subspace of X. If S, T are subspaces of X and $S \subseteq T$ then also S is a subpace of T.

< ⊒ >

Subspace

Proposition

Let $f: X \to Y$ be a function. Let S be a subspace of the space X and let T be a subspace of Y. Moreover, let as assume that $f[S] \subseteq T$. Then:

a) If $f: X \to Y$ is continuous then the restriction $f|_S: S \to Y$ is continuous, too.

b) The function $f: X \to Y$ is continuous if and only if $f: X \to T$ is continuous.

Definition of an embedding

Definition

A map $i: S \to X$ between the topological spaces S and X is called an *embedding* if $i: S \to i[S]$ is a homeomorphism between S and the subspace i[S] of the space X. An embedding is denoted as $i: S \hookrightarrow X$.

Embedding

Proposition

Let $S \subseteq X$, where (S, \mathcal{T}_S) and (X, \mathcal{T}_X) are topological spaces. Let us define $i: S \to X$ by i(x) = x for any $x \in S$. Then we have: (S, \mathcal{T}_S) is a subspace of (X, \mathcal{T}) if and only if $i: (S, \mathcal{T}_S) \hookrightarrow (X, \mathcal{T}_X)$ is an embedding.

-∢ ≣ ≯

Embedding

Proposition

If $f: X \hookrightarrow Y$ and $g: Y \hookrightarrow Z$ are embeddings, then the composition $g \circ f: X \to Z$ is an embedding, too.

Corollary

If $f: X \hookrightarrow Y$ is an embedding and S is a subspace of X then the restriction $f|_S: S \to Y$ as well.

Embedding

Proposition

Let X be a topological space and S be a subspace of S. Let $i_S: S \hookrightarrow X$ be the embedding of S into X. Let Y be a topological space and $g: Y \to S$ je zobrazenie. Potom g je spojité práve vtedy, keď $e \circ g$ je spojité.

Hereditary properties

Definition

A topological property P (or a class of topological spaces) is called *hereditary* if, for any space with the property P, every its subspace has the property P, too.

We use the name *open (closed) hereditary* property if an analogous claim holds for open (closed) subspaces.

Countability axioms

- Any subspace of a first countable space is first countable.
- > Any subspace of a second countable space is second countable.
- Every subspace of a separable space is separable. (Moore plane is an example of a space which is not hereditarily separable.)

Subspaces

Hereditary properties

Moore plane

• • • • • • • •

∢ 臣 ≯

æ

Cover

Definition

Let X be a topological space. A family $C = \{C_i; i \in I\}$ of subsets of the set X is called a *cover* of the space X if

$$\bigcup S = \bigcup_{i \in I} A_i = X.$$

If every element of the cover ${\mathcal C}$ is an open set then ${\mathcal C}$ is an open cover.

If every element of C is a closed set then C is a *closed cover*. If C is a locally finite system then C is a *locally finite cover*.

A A D

Open cover

Proposition

Let $\{U_i; i \in I\}$ be an open cover of a topological space X. Let $f: X \to Y$ be a map into a topological space Y. If the restriction $f|_{U_i}: U_i \to Y$ is continuous for every $i \in I$ then the map f is also continuous.

$$f^{-1}[V] = \bigcup_{i \in I} (f^{-1}[V] \cap U_i) = \bigcup_{i \in I} (f|_{U_i})^{-1}[V]$$

Locally finite closed cover

Proposition

Let X, Y be topological spaces and $f: X \to Y$ be a map. Let $\{C_i; i \in I\}$ be a locally finite closed cover of X. If the restriction $f|_{C_i}: C_i \to Y$ is continuous for every $i \in I$ then the map f is also continuous.

$$f^{-1}[C] = \bigcup_{i \in I} (f^{-1}[C] \cap C_i) = \bigcup_{i \in I} (f|_{C_i})^{-1}[C]$$