#### October 16, 2024

Topological sum

・ロト ・日ト・ ・ ヨト

< ≣ >

æ

#### Four basic constructions

- subspace (embedding)
- quotient space (quotient map)
- topological sum
- product space

<∄ ► < Ξ ►

문 문 문

### Definition

Let  $(X_i, \mathcal{T}_i)$  be a topological space for each  $i \in I$ . We assume additionally that the sets  $X_i$  are pairwise *disjoint*. Then we define a topology  $\mathcal{T}$  on the set  $X = \bigcup_{i \in I} X_i$  as

$$\mathcal{T} = \{ U \subseteq \bigcup_{i \in I} X_i; (\forall i \in I) U \cap X_i \in \mathcal{T}_i \},\$$

i.e., the open sets are precisely the sets such that the intersection with  $X_i$  is open in  $X_i$  (for each  $i \in I$ ). The space  $(X, \mathcal{T})$  is called the *topological sum* of the spaces  $(X_i, \mathcal{T}_i)$  and denoted  $\coprod_{i \in I} X_i$ .

### Proposition

Let  $\{X_i; i \in I\}$  be a system of disjoint topological spaces and let  $X = \coprod_{i \in I} X_i$  be their topological sum. Then every  $X_i$  is a clopen subspace of  $X_i$ .

▲ @ ▶ < ≥ ▶</p>

글 > 글

### Proposition

Let  $X = \prod_{i \in I} X_i$  and let  $e_i : X_i \hookrightarrow X$  denotes the embedding of  $X_i$ into the topological sum. Let  $f : X \to Y$  be a map into a topological space Y. The map f is continuous if and only if  $f|_{X_i} = f \circ e_i$  is continuous for every  $i \in I$ .



イロト イポト イモト イモト 一日



#### Proposition

For every  $i \in I$ , let  $f_i : X_i \to Y$  be a continuous map between topological spaces. Then also the map  $[f_i] : \coprod_{i \in I} X_i \to Y$  is continuous.

#### Proposition

Let  $X = \coprod_{i \in I} X_i$  and let  $e_i \colon X_i \hookrightarrow X$  be the embedding of  $X_i$  into the topological product. Let Y be a topological space and let  $f_i \colon X_i \to Y$  be a continuous map for every  $i \in I$ . Then there exists a unique continuous map  $\overline{f} \colon \coprod_{i \in I} X_i \to Y$  such that

$$\overline{f} \circ e_i = f_i$$

holds for every  $i \in I$ .



# Topological sum

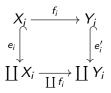
$$h: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$$
$$h(x) = f_i(x) \qquad \text{ak } x \in X_i$$

Topological sum

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

### Topological sum



#### Proposition

Let  $f_i: X_i \to Y_i$  be a continuous map between topological spaces for every  $i \in I$ . Then also the map  $\coprod_{i \in I} f_i: \coprod_{i \in I} X_i \to \coprod_{i \in I} Y_i$  is continuous.

|白子 |田子 |田子