October 16, 2024

Product space

<ロ> (四) (四) (日) (日) (日)

æ

500

Four basic constructions

- subspace (embedding)
- quotient space (quotient map)
- ▶ topological sum
- product space

▲御▶ ▲臣

글 > 글

イロト イヨト イヨト イヨト

3

Product of two sets

$$egin{aligned} X_1 imes X_2 &= \{(x_1, x_2); x_1 \in X_1, x_2 \in X_2\} \ p_1 \colon X_1 imes X_2 o X_1 ext{ a } p_2 \colon X_1 imes X_2 o X_2 \ p_1(x_1, x_2) &= x_1 \ p_2(x_1, x_2) &= x_2 \end{aligned}$$

An alternative notation: $p_A : A \times B \to A$ where $p_A(a, b) = a$

イロト イヨト イヨト イヨト

æ

Product of two sets

From
$$f_1\colon X o Y_1$$
 and $f_2\colon X o Y_2$ we get $g\colon X o Y_1 imes Y_2$: $g(x)=(f_1(x),f_2(x)).$

Notation: $\langle f_1, f_2 \rangle$.

Cartesian product of sets

(日本) (日本)

Product of two sets

If we have $f_1 \colon X_1 \to Y_1$ and $f_2 \colon X_2 \to Y_2$:

$$f_1 imes f_2 \colon X_1 imes X_2 o Y_1 imes Y_2 \ (f_1 imes f_2)(x_1, x_2) = (f_1(x_1), f_2(x_2))$$

If f_1 , f_2 are injective (surjective, bijective) then $f_1 \times f_2$ injective (surjective, bijective), too.

< 🗇 🕨 < 🖃 🕨

Product of an arbitrary system

Definition

Suppose that for any $i \in I$ we are given a set X_i . The Cartesian product is defined as the system of all functions from I into $\bigcup_{i \in I} X_i$ such that $f(i) \in X_i$ holds for each $i \in I$.

$$\prod_{i\in I} X_i = \{f: I \to \bigcup_{i\in I} X_i; (\forall i \in I) f(i) \in X_i\}$$

projections $p_i: \prod_{i \in I} X_i \to X_i:$

$$p_i(f) = f(i)$$

Cartesian product of sets

(日)

∢ ≣ ≯

Product of an arbitrary system

If we have a map $f_i \colon X \to Y_i$ for each $i \in I$ then we get

 $\langle f_i \rangle \colon X \to \prod Y_i$

Cartesian product of sets

イロト イヨト イヨト イヨト

Product of an arbitrary system

If we have a map $f_i \colon X_i \to Y_i$ for each $i \in I$ then we get

$$h = \prod_{i \in I} f_i \colon \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$$

If all f_i 's are injective (surjective, bijective) then $\prod_{i \in I} f_i$ is injective (surjective, bijective) as well.

Definition of the product space

Definition

Let (X_1,\mathcal{T}_1) a (X_2,\mathcal{T}_2) be topological spaces. Let us define

$$\mathcal{B} = \{ U \times V; U \in \mathcal{T}_1, V \in \mathcal{T}_2 \}.$$

Then \mathcal{B} is a base of a topology \mathcal{T} on the Cartesian product $X_1 \times X_2$. this topology is called the *product topology* and the space $(X_1 \times X_2, \mathcal{T})$ is called the *product* of the spaces (X_1, \mathcal{T}_1) a (X_2, \mathcal{T}_2) . Sometimes we will denote this topology as $\mathcal{T}_1 \times \mathcal{T}_2$.

$$\mathcal{B}' = \{U imes V; U \in \mathcal{B}_1, V \in \mathcal{B}_2\}$$

Product of two spaces

< ≣⇒

A⊒ ▶ ∢ ∃

3

Definition of the product space

17 ▶

Examples

- Product of two discrete spaces is discrete.
- Product of two indiscrete spaces is indiscrete.
- Product of two metrizable spaces is metrizable.

$$d(x,y) = \max\{d(x_1,y_1), d(x_2,y_2)\}$$

Product of two spaces

Projekcie sú spojité a otvorené

Proposition

Let $X_1 \times X_2$ be the product of spaces X_1 and X_2 . Let $p_i: X_1 \times X_2 \rightarrow X_i$ be the corresponding projections. The maps p_1 and p_2 are continuous and open.

Product of two spaces

A A D

A projection is not necessarily closed

Figure: A projection is not necessarily closed

《口》 《卽》 《臣》 《臣》

2

Product space and continuity

Proposition

Let Y, X₁, X₂ be topological spaces. A map $f: Y \to X_1 \times X_2$ is continuous iff $p_1 \circ f$ and $p_2 \circ f$ are continuous.

•
$$f_1: X \to Y_1, f_2: X \to Y_2$$
 continuous $\Rightarrow \langle f_1, f_2 \rangle$ continuous
• $f_1: X_1 \to Y_1, f_2: X_2 \to Y_2$ continuous $\Rightarrow f_1 \times f_2$ continuous

2

Torus

Example

$$T = S \times S$$
,

where
$$S$$
 denotes a circle.
Quotient map $q\colon I o S$, $q(t)=e^{i2\pi t}$ yields

$$q \times q \colon I \times I \to S \times S.$$

$$(x, y) \sim (x', y') \Leftrightarrow \exp(i2\pi x) = \exp(i2\pi x')$$
 and
 $\exp(i2\pi y) = \exp(i2\pi y').$

Product of two spaces

Torus

Definition of the product space

Definition Let (X_i, \mathcal{T}_i) be a topological space for each $i \in I$. Then

$$\mathcal{S} = \{ p_i^{-1}[U]; i \in I, U \in \mathcal{T}_i \}$$

determines a subbase for a topology on $X = \prod_{i \in I} X_i$. Let us denote this topology as \mathcal{T} . The space (X, \mathcal{T}) is called the *product* of the spaces (X_i, \mathcal{T}_i) and denoted as $\prod_{i \in I} X_i$. If $X_i = X$ for each $i \in I$, it is called the *power* of the space X and denoted X^I

Product of an arbitrary system

イロト イヨト イヨト イヨト

æ

Definition of the product space

$$\mathcal{S} = \{ p_i^{-1}[U]; i \in I, U \in \mathcal{T}_i \}$$

$$\mathcal{B} = \{\bigcap_{i \in F} p_i^{-1}[U_i]; U_i \in \mathcal{T}_i, F \text{ je konečná podmnožina množiny } I\}$$
$$= \{\bigcap_{i_1}^{i_k} p_{i_1}^{-1}[U_{i_1}] \cap \dots \cap p_{i_k}^{-1}[U_{i_k}]; i_1, \dots, i_k \in I, U_{i_j} \in \mathcal{T}_{i_j}\}$$

Product of an arbitrary system

Definition of the product space

Figure: Illustration of a typic set from the subbase (or base) together with some functions from this set

Product space

Image: A matrix

A⊒ ▶ ∢ ∃

Box topology

We do not want $\bigcap_{i \in I} p_i^{-1}[U_i] = \prod_{i \in I} U_i$.

- product of compact spaces
- universal property, categorial limit
- initial topology w.r.t. the projections
- characterization of continuity
- convergence = pointwise convergence

47 ▶ ∢ ∃

Continuity

Proposition

Let X_i be a topological space for each $i \in I$ and $\prod_{i \in I} X_i$ be the product space. Then the projection $p_i \colon \prod_{i \in I} X_i \to X_i$ is a continuous and open map for every $i \in I$.

|| (同) || (回) || (\cup) ||

æ

Continuity

Proposition

Let Y be a topological space. Let X_i be a topological space for each $i \in I$. Let $f: Y \to \prod X_i$..

The map f is continuous iff the composition $p_i \circ f$ is continuous for every $i \in I$.

Continuity

Corollary

Let $f_i: Y \to X_i$ be a continuous map between topological spaces for every $i \in I$. Then also $\langle f_i \rangle \colon Y \to \prod_{i \in I} X_i$ is continuous.

Corollary

Let $f_i: X_i \to Y_i$ be a continuous map between topological spaces for every $i \in I$. Then also $\prod_{i \in I} f_i: \prod_{i \in I} X_i \to \prod_{i \in I} Y_i$ is continuous.

Universal property

Proposition

Let X_i be a topological space for every $i \in I$. Let us denote by $\prod_{i \in I} X_i$ the product space and by $p_i : X \to X_i$ the projections. Let Ybe a topological space and let $f_i : Y \to X_i$ be a continuous map for every $i \in I$. Then there exists exactly one map $\overline{f} : Y \to \prod_{i \in I} X_i$ fulfilling

$$p_i \circ \overline{f} = f_i$$

for every $i \in I$. Moreover, \overline{f} is continuous.

Closure in the product space

Proposition

Let X_i be a topological space and $A_i \subseteq X_i$ for every $i \in I$. Then

$$\prod_{i\in I}\overline{A_i}=\overline{\prod_{i\in I}A_i}.$$

Corollary Let C_i be a closed subset of X_i for every $i \in I$. Then also the product $\prod_{i \in I} C_i$ is closed in $\prod_{i \in I} X_i$

Countable base

- Product of countably many second countable spaces is second countable.
- Product of countably many first countable spaces is first countable. (I.e., there is a countable base for the product topology.)

Separable space

Theorem

Suppose the X_i is a separable space for each $i \in I$ and $|I| \leq c$. Then the product $\prod_{i \in I} X_i$ is a separable space.

Lemma

Let D be the discrete space with the cardinality \aleph_0 and let $|I| = \mathfrak{c}$. Then D^I is a separable space.