Product space

October 16, 2024

[Product space](#page-26-0)

K ロ ⊁ K 伊 ⊁ K 店

이동 >

×

重

 299

Product space

Four basic constructions

- ▶ subspace (embedding)
- ▶ quotient space (quotient map)
- ▶ topological sum
- ▶ product space

4日 ト ×. ♪♪ 290

≣

€

[Product space](#page-1-0) **[Cartesian product of sets](#page-2-0)**

Product of two sets

$$
X_1 \times X_2 = \{(x_1, x_2); x_1 \in X_1, x_2 \in X_2\}
$$

$$
p_1: X_1 \times X_2 \to X_1 \text{ a } p_2: X_1 \times X_2 \to X_2
$$

$$
p_1(x_1, x_2) = x_1
$$

$$
p_2(x_1, x_2) = x_2
$$

An alternative notation: $p_A: A \times B \rightarrow A$ where $p_A(a, b) = a$

[Product space](#page-0-0)

K ロ ▶ K 御 ▶ K 唐

∢重き

 \sim

重

 298

 $2Q$

Product of two sets

From $f_1: X \to Y_1$ and $f_2: X \to Y_2$ we get $g: X \to Y_1 \times Y_2$. $g(x) = (f_1(x), f_2(x)).$

Notation: $\langle f_1, f_2 \rangle$.

 $4.17 \times$

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} \mathcal{B}

[Product space](#page-1-0) **[Cartesian product of sets](#page-2-0)**

Product of two sets

If we have $f_1: X_1 \rightarrow Y_1$ and $f_2: X_2 \rightarrow Y_2$:

$$
f_1 \times f_2: X_1 \times X_2 \to Y_1 \times Y_2
$$

($f_1 \times f_2$)(x_1, x_2) = (f_1 (x_1), f_2 (x_2))

If f_1 , f_2 are injective (surjective, bijective) then $f_1 \times f_2$ injective (surjective, bijective), too.

[Product space](#page-0-0)

 $4.17 \times$

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} \mathcal{B}

つくい

へのへ

Product of an arbitrary system

Definition

Suppose that for any $i \in I$ we are given a set X_i . The *Cartesian product* is defined as the system of all functions from 1 into $\bigcup X_i$ i∈I such that $f(i) \in X_i$ holds for each $i \in I$.

$$
\prod_{i\in I}X_i=\{f\colon I\to \bigcup_{i\in I}X_i; (\forall i\in I)f(i)\in X_i\}
$$

projections $\rho_i\colon\prod$ $\prod_{i\in I} X_i \to X_i$

$$
p_i(f)=f(i)
$$

[Product space](#page-1-0) **[Cartesian product of sets](#page-2-0)**

 $2Q$

Product of an arbitrary system

If we have a map $f_i\colon X\to Y_i$ for each $i\in I$ then we get

$\langle f_i \rangle \colon X \to \prod Y_i$

[Product space](#page-0-0)

KITLE

3 4 20 3 4 3

[Product space](#page-1-0) **[Cartesian product of sets](#page-2-0)** Cartesian product of sets

メタトメ ミトメ ミト

つくい

Product of an arbitrary system

If we have a map $f_i \colon X_i \to Y_i$ for each $i \in I$ then we get

$$
h=\prod_{i\in I}f_i\colon \prod_{i\in I}X_i\to \prod_{i\in I}Y_i
$$

If all f_i 's are injective (surjective, bijective) then $\prod f_i$ is injective i∈I (surjective, bijective) as well.

∽ດເ

Definition of the product space

Definition

Let (X_1, \mathcal{T}_1) a (X_2, \mathcal{T}_2) be topological spaces. Let us define

$$
\mathcal{B} = \{U \times V; U \in \mathcal{T}_1, V \in \mathcal{T}_2\}.
$$

Then β is a base of a topology $\mathcal T$ on the Cartesian product $X_1 \times X_2$, this topology is called the *product topology* and the space $(X_1 \times X_2, \mathcal{T})$ is called the *product* of the spaces (X_1, \mathcal{T}_1) a (X_2, \mathcal{T}_2) . Sometimes we will denote this topology as $\mathcal{T}_1 \times \mathcal{T}_2$.

$$
\mathcal{B}'=\{U\times V; U\in \mathcal{B}_1, V\in \mathcal{B}_2\}
$$

[Product space](#page-1-0) **Product spaces** [Product of two spaces](#page-8-0)

Definition of the product space

Figure: Basic sets in the product topology have the form $U \times V$

[Product space](#page-0-0)

K ロ ▶ K 御 ▶ K 唐

∢重き

×

重

 298

 $2Q$

Examples

- ▶ Product of two discrete spaces is discrete.
- ▶ Product of two indiscrete spaces is indiscrete.
- ▶ Product of two metrizable spaces is metrizable.

$$
d(x,y) = \max\{d(x_1,y_1), d(x_2,y_2)\}
$$

 $4.17 \times$

[Product space](#page-1-0) **Product spaces** [Product of two spaces](#page-8-0)

Projekcie sú spojité a otvorené

Proposition

Let $X_1 \times X_2$ be the product of spaces X_1 and X_2 . Let $p_i\colon X_1\times X_2\to X_i$ be the corresponding projections. The maps p_1 and p_2 are continuous and open.

KITLE

 \mathcal{A} $\mathcal{F}^{\mathcal{A}}$ \mathcal{B} \mathcal{A} \mathcal{B}

つくい

[Product space](#page-1-0) **Product spaces** [Product of two spaces](#page-8-0)

 $2Q$

A projection is not necessarily closed

Figure: A projection is not necessarily closed

[Product space](#page-0-0)

4日 ト

∢ @ ▶

[Product space](#page-1-0) [Product of two spaces](#page-8-0)

 \mathcal{A} and \mathcal{A} . The \mathcal{A} is a set of \mathcal{B}

へのへ

Product space and continuity

Proposition

Let Y, X_1 , X_2 be topological spaces. A map $f: Y \rightarrow X_1 \times X_2$ is continuous iff $p_1 \circ f$ and $p_2 \circ f$ are continuous.

▶ $f_1: X \rightarrow Y_1, f_2: X \rightarrow Y_2$ continuous \Rightarrow $\langle f_1, f_2 \rangle$ continuous ▶ $f_1: X_1 \rightarrow Y_1$, $f_2: X_2 \rightarrow Y_2$ continuous $\Rightarrow f_1 \times f_2$ continuous

 298

重

K 로)

Torus

Example

$$
T=S\times S,
$$

where S denotes a circle. Quotient map $q\colon I\to S, \ q(t)=e^{i2\pi t}$ yields

$$
q\times q\colon I\times I\to S\times S.
$$

 $(x,y) \sim (x',y') \Leftrightarrow \exp(i2\pi x) = \exp(i2\pi x')$ and $\exp(i2\pi y) = \exp(i2\pi y')$

K ロ ▶ K 御 ▶ K ミ ▶

[Product space](#page-1-0) **Product spaces** [Product of two spaces](#page-8-0)

Torus

[Product space](#page-0-0)

∽ດເ

Definition of the product space

Definition Let (X_i, \mathcal{T}_i) be a topological space for each $i \in I$. Then

$$
\mathcal{S} = \{p_i^{-1}[U]; i \in I, U \in \mathcal{T}_i\}
$$

determines a subbase for a topology on $X=\prod X_i$. Let us denote i∈I this topology as T . The space (X,\mathcal{T}) is called the *product* of the spaces (X_i,\mathcal{T}_i) and denoted as $\prod X_i$ i∈I If $X_i = X$ for each $i \in I$, it is called the power of the space X and denoted $X^I.$

[Product space](#page-1-0) **Product space [Product of an arbitrary system](#page-16-0)**

メロトメ部 トメミトメミト

准

 299

Definition of the product space

$$
\mathcal{S} = \{p_i^{-1}[U]; i \in I, U \in \mathcal{T}_i\}
$$

$$
\mathcal{B} = \{ \bigcap_{i \in F} p_i^{-1}[U_i]; U_i \in \mathcal{T}_i, F \text{ je konečná podmnožina množiny } I \}
$$

=
$$
\{ \bigcap_{i_1}^{i_k} p_{i_1}^{-1}[U_{i_1}] \cap \cdots \cap p_{i_k}^{-1}[U_{i_k}]; i_1, \ldots, i_k \in I, U_{i_j} \in \mathcal{T}_{i_j} \}
$$

[Product space](#page-0-0)

[Product space](#page-1-0) **[Product of an arbitrary system](#page-16-0)**

Definition of the product space

Figure: Illustration of a typic set from the subbase (or base) together with some functions from this set

[Product space](#page-0-0)

Kロト K回ト

 $2Q$

●▶

つくい

Box topology

We do not want \bigcap i∈I p_i^{-1} $\overline{U}_i^{-1}[U_i] = \prod_i$ i∈I U_i

- ▶ product of compact spaces
- ▶ universal property, categorial limit
- \blacktriangleright initial topology w.r.t. the projections
- ▶ characterization of continuity
- \triangleright convergence = pointwise convergence

つくい

Continuity

Proposition

Let X_i be a topological space for each $i \in I$ and $\prod\limits_{i \in I} X_i$ be the i∈I product space. Then the projection $p_i\colon \prod\limits_i X_i \to X_i$ is a continuous i∈I and open map for every $i \in I$.

Continuity

Proposition

Let Y be a topological space. Let X_i be a topological space for each $i \in I$. Let $f \colon Y \to \prod_{i \in I} X_i$..

i∈I The map f is continuous iff the composition $p_i \circ f$ is continuous for every $i \in I$.

 $4.17 \times$

つくい

⊀ 伊 ▶ (すき)▶

へのへ

Continuity

Corollary

Let $f_i: Y \to X_i$ be a continuous map between topological spaces for every $i \in I$. Then also $\langle f_i \rangle \colon Y \to \prod_{i \in I} X_i$ is continuous. i∈I

Corollary

Let $f_i \colon X_i \to Y_i$ be a continuous map between topological spaces for every $i \in I$. Then also $\prod_i f_i: \prod_i X_i \to \prod_i Y_i$ is continuous. i∈I i∈I i∈I

へのへ

Universal property

Proposition

Let X_i be a topological space for every $i \in I$. Let us denote by $\prod\limits_i X_i$ the product space and by $p_i\colon X\to X_i$ the projections. Let Y i∈I be a topological space and let $f_i \colon Y \to X_i$ be a continuous map for every $i \in I$. Then there exists exactly one map $f \colon Y \to \prod\limits_{i \in I} X_i$ i∈I

$$
\textit{fulfilling}
$$

$$
p_i\circ \overline{f}=f_i
$$

for every $i \in I$. Moreover, \overline{f} is continuous.

へのへ

Closure in the product space

Proposition

Let X_i be a topological space and $A_i \subseteq X_i$ for every $i \in I$. Then

$$
\prod_{i\in I}\overline{A_i}=\overline{\prod_{i\in I}A_i}.
$$

Corollary

Let C_i be a closed subset of X_i for every $i \in I$. Then also the product $\prod \mathcal{C}_i$ is closed in $\prod \mathcal{X}_i$ i∈I i∈I

 Ω

Countable base

- ▶ Product of countably many second countable spaces is second countable.
- \blacktriangleright Product of countably many first countable spaces is first countable. (I.e., there is a countable base for the product topology.)

へのへ

Separable space

Theorem

Suppose the X_i is a separable space for each $i \in I$ and $|I| \leq \mathfrak{c}$. Then the product $\prod X_i$ is a separable space. i∈I

Lemma

Let D be the discrete space with the cardinality \aleph_0 and let $|I| = \mathfrak{c}$. Then D^I is a separable space.