Initial and final topology

October 17, 2024

Initial and final topology

< □ > < □ > < □ > < □ >

< ∃ >

æ

Definition

For each $i \in I$, let (X_i, \mathcal{T}_i) be a topological space and $f_i \colon X \to X_i$ be a function. Then the *initial topology* \mathcal{T} (on the set X) with respect to the system of functions $\{f_i; i \in I\}$ is the coarsest topology such that every $f_i \colon (X, \mathcal{T}) \to (X_i, \mathcal{T}_i)$ is continuous.

Proposition

Let \mathcal{T} be the initial topology on X w.r.t. the system of mappings $\{f_i : X \to X_i, i \in I\}$. Then

$$\mathcal{S} = \{f_i^{-1}[U]; i \in I, U \in \mathcal{T}_i\}$$

is a subbase for the initial topology. Given any subbases S_i of the topologies \mathcal{T}_i , the system

$$\mathcal{S}' = \{f_i^{-1}[U]; i \in I, U \in \mathcal{S}_i\}$$

is also a subbase for the initial topology.

Examples

Examples of initial topology

- embedding
- product space
- subspace of a product
- weak and weak*-topology

표 문 표

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ →

Continuity

Theorem

Let X be a set let (X_i, \mathcal{T}_i) be a topological space for each $i \in I$. Let \mathcal{T} be the initial topology w.r.t. the system of mappings $\{f_i : X \to X_i, i \in I\}$. For any topological space (Y, \mathcal{T}') and any mapping $f : Y \to X$ we have: The mapping f is continuous if and only if the composition $f_i \circ f : Y \to X_i$ is continuous for every $i \in I$.

Continuity and relation to product

Initial topology and product

TODO

Initial and final topology

<ロ> (四) (四) (日) (日) (日)

æ

伺 ト イヨト イヨト

Final topology

Definition

Suppose that for each $i \in I$ we are given a topological space (X_i, \mathcal{T}_i) and a function $f_i: X_i \to X$. Then the final topology \mathcal{T} (on the set X) with respect to the system of functions $\{f_i; i \in I\}$ is the finest topology such that all functions $f_i: (X, \mathcal{T}) \to (X, \mathcal{T}_i)$ is continuous.

- 4 同 ト - 4 日 ト

Final topology

Proposition

Suppose we have a system of functions $\{f_i \colon X_i \to X; i \in I\}$, where (X_i, \mathcal{T}_i) is a topological space for every $i \in I$. Let us define

$$\mathcal{T} = \{ U \subseteq X; (\forall i \in I) f_i^{-1}[U] \in \mathcal{T}_i \}.$$

Then \mathcal{T} is a topology on X. This topology is the final topology w.r.t. this system of functions.

Final topology

- 4 母 ト 4 母 ト 4 母 ト

3

Examples of final topologies

faktorový priestortopologický súčet

$$X_i \xrightarrow{e_i} \coprod_{i \in I} X_i \xrightarrow{q} Y$$

Initial and final topology

個 ト イヨ ト イヨ ト

Continuity

Theorem

For each $i \in I$, let (X_i, \mathcal{T}_i) be a topological space and $\{f_i : X_i \to X; i \in I\}$ be a function. Let X as the final topology w.r.t. $\{f_i; i \in I\}$. Then a function $f : X \to Y$ is continuous if and only if $f \circ f_i$ is containuous for every $i \in I$.

Final topology

- The final topology w.r.t. the maps f_i: X_i → X is the same as the final topology w.r.t. [f_i]: ∐ X_i → X.
- ▶ The function $[f_i]$: $\coprod X_i \to X$ is surjective iff $\bigcup_{i=1}^{n} f[X_i] = X$.

At the same time, the condition $\bigcup_{i \in I} f[X_i] = X$ describes when $[f_i]$ is a quotient map.