- For every sequence $(A_n)_{n\in\mathbb N}$ of sets from $\mathcal I$ there is $A\in\mathcal I$ such that $A_n\subseteq^* A$ for all $n$'s.
- Any sequence $(F_n)_{n\in\mathbb N}$ of sets from $\mathcal F(\mathcal I)$ has a pseudointersection in $\mathcal F(\mathcal I)$. (Pseudointersection of $(F_n)_{n\in\mathbb N}$ is a set $F$ such that $F\subseteq^* F_n$ for each $n\in\mathbb N$.)
- For every sequence $(A_n)_{n\in\mathbb N}$ of sets belonging to $\mathcal I$ there exists a sequence $(B_n)_{n\in\mathbb N}$ of sets from $\mathcal I$ such that $A_j =^* B_j$ for $j\in\mathbb N$ and $B=\bigcup_{j\in\mathbb N} B_j\in\mathcal I$.
- For every sequence of mutually disjoint sets $(A_n)_{n\in\mathbb N}$ belonging to $\mathcal I$ there exists a sequence $(B_n)_{n\in\mathbb N}$ of sets belonging to $\mathcal I$ such that $A_j =^* B_j$ for $j\in\mathbb N$ and $B=\bigcup_{j\in\mathbb N} B_j\in\mathcal I$.
- For every non-decreasing sequence $A_1\subseteq A_2 \subseteq \dots \subseteq A_n \subseteq \dots$ of sets from $\mathcal I$ there exists a sequence $(B_n)_{n\in\mathbb N}$ of sets belonging to $\mathcal I$ such that $A_j =^* B_j$ for $j\in\mathbb N$ and $B=\bigcup_{j\in\mathbb N} B_j\in\mathcal I$.
- In the Boolean algebra $\mathcal P(S)/\mathrm{Fin}$ the ideal $\mathcal I$ corresponds to a $\sigma$-directed subset, that is, every countable subset has an upper bound.
Ako referencie, kde sa dajú nájsť dôkazy, že niektoré z týchto podmienok sú ekvivalentné, môžem spomenúť Proposition 1 v článku Balcerzak, Marek; Dems, Katarzyna; Komisarski, Andrzej Journal of Mathematical Analysis and Applications, Vol. 328, No. 1, p. 715-72, DOI: 10.1016/j.jmaa.2006.05.040. O niečo všeobecnejšie je to sformulované ako Lemma 3.9 v článku Mačaj-Sleziak týkajúcom sa $\mathcal I^{\mathcal K}$-konvergencie: https://projecteuclid.org/euclid.rae/1300108092
Okrem názvu P-ideál sa bežne vyskytujú aj vlastnosť AP alebo vlastnosť AP0.