Re: Prednášky LS 2021/22 - teória množín
Posted: Mon May 02, 2022 6:17 pm
12. týždeň (2.5.)
Hľadanie pevných bodov. Pozreli sme sa na nejaké veci o pevných bodoch, ako sa dajú hľadať pomocou iterácií a tiež na to ako sa takéto iterácie dajú nakresliť.
Dokázali sme Banachovu vetu o pevnom bode.
Ukázali sme si babylonskú metódu hľadania druhej odmocniny.
Stručne sme spomenuli aj to, že aj na prvý dôkaz Cantor-Bernsteinovej vety sa dá pozerať ako na hľadanie pevného bodu. (Potrebovali sme tam množinu takú, že $F(C)=C$.) Rozdiel je ale ten, že nepracujeme s reálnou funkciou ale s $\mathcal P(X)\to\mathcal P(X)$.
Obe situácie sa dajú nejako zovšeobecniť na úplné zväzy. Konkrétne dôkaz, ktorý sme robili na dôkaz existencie množiny s vlastnosťou $F(C)=C$, by sa dal s malými zmenami upraviť na dôkaz Knaster-Tarského vety.
Hľadanie pevných bodov. Pozreli sme sa na nejaké veci o pevných bodoch, ako sa dajú hľadať pomocou iterácií a tiež na to ako sa takéto iterácie dajú nakresliť.
Dokázali sme Banachovu vetu o pevnom bode.
Ukázali sme si babylonskú metódu hľadania druhej odmocniny.
Stručne sme spomenuli aj to, že aj na prvý dôkaz Cantor-Bernsteinovej vety sa dá pozerať ako na hľadanie pevného bodu. (Potrebovali sme tam množinu takú, že $F(C)=C$.) Rozdiel je ale ten, že nepracujeme s reálnou funkciou ale s $\mathcal P(X)\to\mathcal P(X)$.
Obe situácie sa dajú nejako zovšeobecniť na úplné zväzy. Konkrétne dôkaz, ktorý sme robili na dôkaz existencie množiny s vlastnosťou $F(C)=C$, by sa dal s malými zmenami upraviť na dôkaz Knaster-Tarského vety.