Page 1 of 2

Prednášky ZS 2021/22 - teória čísel

Posted: Tue Sep 21, 2021 7:04 pm
by Martin Sleziak
V tomto vlákne budem pravidelne dopĺňať, čo sa stihlo prebrať na jednotlivých prednáškach. (Napríklad to môže byť užitočné pre ľudí, ktorí z nejakého dôvodu nemohli prísť na prednášku - aby si mohli pozrieť, čo si treba doštudovať.)

Ak budete mať otázky k niečomu, čo odznelo na prednáškach, otvorte na to nový topic. (Tento topic by som chcel zachovať pre tento jediný účel.)

Re: Prednášky ZS 2021/22

Posted: Thu Sep 23, 2021 12:32 pm
by Martin Sleziak
1. prednáška (23.9.)
Veta o delení so zvyškom. Deliteľnosť. Najväčší spoločný deliteľ, Bézoutova identita, Euklidova lema.
Ako posledné som stihol ukázať dôsledok Euklidovej lemy, ktorý hovorí, že $a\mid c$, $b\mid c$, $(a,b)=1$ $\Rightarrow$ $ab\mid c$. (T.j. ak je číslo deliteľné dvomi nesúdeliteľnými číslami, tak je deliteľné aj ich súčinom.)

Nehovorili sme o tom, ako sa dajú vyrátať čísla spĺňajúce Bézoutovu identitu - ak si potrebujete pripomenúť rozšírený Euklidov algoritmus, nejaké odkazy nájdete tu. Plánujeme sa ale k nemu na tejto prednáške ešte vrátiť (najneskôr pri lineárnych kongruenciách).

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Sep 30, 2021 1:38 pm
by Martin Sleziak
2. prednáška (30.9.)
Najväčší spoločný deliteľ. Ukázal som, že pre $a=qb+r$ máme $(a,b)=(b,r)$. (Tento vzťah je dôležitý pri rozšírenom Euklidovom algoritme.)
Tiež sme ukázali, že z $(a,b)=1$ a $(a,c)=1$ vyplýva $(a,bc)=1$.
Ďalšie vlastnosti z lemy 2.1.12 sme len povedali bez dôkazu. Prešli sme príklad 2.1.13 o n.s.d $f(n)$ a $f(n+1)$ pre $f(n)=n^4+n^2+1$.
Najmenší spoločný násobok - definícia a vzťah s n.s.d.
Preskočil som lemu 2.1.14 a dôsledok 2.1.15 - vrátime sa k nim neskôr, keď ich budeme potrebovať použiť.

Nehovorili sme o tom, ako sa dajú vyrátať čísla spĺňajúce Bézoutovu identitu - ak si potrebujete pripomenúť rozšírený Euklidov algoritmus, nejaké odkazy nájdete tu. Plánujeme sa ale k nemu na tejto prednáške ešte vrátiť (najneskôr pri lineárnych kongruenciách).

Prvočísla. Definícia, základné vlastnosti, základná veta aritmetiky (jednoznačnosť a existencia rozkladu na prvočísla). Kanonický rozklad, jeho súvis s deliteľnosťou, n.s.d, n.s.n.

Rozloženie prvočísel. Ukázali sme, že v množine prvočísel sú ľubovoľne dlhé medzery.
Plánujeme sa dostať k dôkazu, že rad prevrátených hodnôt prvočísel diverguje. Zatiaľ sme si povedali niečo o číslach bez kvadratických deliteľov, ktoré budeme používať v dôkaze.

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Oct 07, 2021 2:14 pm
by Martin Sleziak
3. prednáška (7.10.)
Súčet prevrátených hodnôt prvočísel. Ukázali sme si tri dôkazy toho, že rad prevrátených hodnôt prvočísel diverguje.
Povedali sme si tiež niečo o číslach bez kvadratických deliteľov, ktoré sme využívali v dôkaze.
Takisto sme v dôkaze využili to, že rad $\sum\frac1{n^2}$ konverguje. (Čo sa dá ukázať pomerne ľahko.) Ak vás zaujíma dôkaz toho, že presná hodnota tejto sumy je $\pi^2/6$, tak nejaký dôkaz je v texte prednáške (v dodatku) - je to dôkaz pomocou Fourierových radov. Existuje veľa ďalších dôkazov, nejaké odkazy nájdete tu: viewtopic.php?t=65
Jeden z dôkazov, ktorý sme robili (pochádzajúci od Paula Erdősa) sa dá nájsť v Proofs from THE BOOK - trochu som robil tejto knihe reklamu, že je vcelku zaujímavá.

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Oct 14, 2021 1:50 pm
by Martin Sleziak
4. prednáška (14.10.)
Prvočíselná funkcia a prvočíselná veta. Sformulovali sme prvočíselnú vetu. Ako príklad jej použitia sme ukázali, že množina $\{p/q; p,q\in\mathbb P\}$ je hustá v $(0,\infty)$. (Nerobil som časť o funkciách $\operatorname{li}(x)$ a $\operatorname{Li}(x)$.)
Prvočíselnú vetu som povedal bez dôkazu. Tu na matfyze sa s jej dôkazom môžete stretnúť napríklad na predmete Vybrané kapitoly z teórie funkcií komplexnej premennej v magisterskom štúdiu.
Čebyševove nerovnosti. Dokázali sme Čebyševove nerovnosti, t.j. $$c_1 \frac x{\ln x} \leq \pi(x) \leq c_2 \frac x{\ln x}.$$ Najprv som chvíľu kecal o tom, že ich síce budeme dokazovať iba pre dostatočne veľké prirodzené čísla - ale že s nejakou námahou navyše by sme to boli schopní rozšíriť na reálne čísla $x\ge2$. (Keďže sa tu nejako vyskytlo to, že funkcia $f(x)=\frac{x}{\ln x}$ je od istého miesta monotónna, tak pridám linku na nejaký príklad, kde táto funkcia tiež hrá úlohu: https://msleziak.com/forum/viewtopic.php?t=1249 - je to otázka o porovnávaní čísel $x^y$ a $y^x$.)
Ukázali sme, že platí $\prod_{p\leq x} p < 4^x,$ a toto sme využili pri dôkaze jednej z nerovností.
Ukázali sme, že pre $d_n=[1,2,\ldots,n]$ platí $d_n\geq 2^{n-2}$. Na základe toho sme vedeli dostať nerovnosť $\pi(n) \geq \frac{n-2}{\lg n}.$

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Oct 21, 2021 4:47 pm
by Martin Sleziak
5. prednáška. (21.10.)
Bertrandov postulát. Dokázali sme Bertrandov postulát. Približne rovnaký dôkaz (s odchýlkami v niektorých detailoch) sa dá nájsť aj na Wikipédii: Proof of Bertrand's postulate.

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Oct 28, 2021 1:40 pm
by Martin Sleziak
6. prednáška (28.10.)
Prvočísla špeciálneho tvaru a niektoré otvorené problémy. Povedali sme si niečo o Mersennových a Fermatových číslach. Ako zaujímavosť sme spomenuli aj Gauss-Wantzelovu vetu, ktorá hovorí o skonštruovateľnosti pravidelných $n$-uholníkov pravítkom a kružidlom a súvise s Fermatovými prvočíslami.
V súvislosti s konštrukciami pravítkom a kružidlom som spomenul, že nejaké takéto veci sa dajú odvodiť s použitím rozšírení polí, niečo k tomu je napísané aj tu: viewtopic.php?t=1532
Kongruencie. Stihli sme definíciu a základné vlastnosti kongruencií. (V podstate sme prešli časť 3.1.1 z textu.)
Pri kontrole, že $M_{11}=2^{11}-1$ a $F_5=2^{32}+1$ sú zložené sme spomenuli exponentiation by squaring. (Ak si chcete pozrieť nejakú inú možnosť overenia, že $F_5$ je zložené, pridám takúto linku: To show that Fermat number $F_{5}$ is divisible by $641$.)
Dokázal som aj nutné podmienky pre prvočíselné delitele Mersennových a Fermatových čísiel - tvrdenie 3.1.15 (ak $q\mid 2^p-1$, tak $p\mid q-1$) a vetu 3.1.16 (ak $p\mid 2^{2^m}+1$, tak $p=k2^{m+1}+1$).

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Fri Nov 05, 2021 2:24 pm
by Martin Sleziak
7. prednáška. (4.11.)
Niečo som povedal o pojme kongruencia v trochu inom, ale veľmi príbuznom, zmysle. Konkrétne o kongruenciách v grupách a okruhoch, ktoré úzko súvisia s normálnymi podgrupami/ideálmi. (Máme vlastne 3 rôzne pohľady, ako sa dá pozerať na normálne podgrupy. Okrem definície sa na ne dá pozerať ako na jadrá homomorfizmov a tiež máme jedno-jednoznačnú korešpondenciu medzi grupami a kongruenciami. Podobne je to s ideálmi v okruhoch a okruhovými kongruenciami.) Toto celé vlastne súvisí s faktorizáciou (faktorovými grupami, okruhmi, a pod.)
Lineárne kongruencie. Veta o tom, kedy existuje riešenie, aký je počet riešení, ako ich nájsť. Vyriešili sme aj jeden konkrétny príklad a na ňom zopakovali aj rozšírený Euklidov algoritmus. (Ukázali sme si aj zápis Euklidovho algoritmu pomocou tabuľky. Dá sa nájsť v poznámkach k prednáške, ale je o ňom niečo aj tu na fóre.)
Čínska veta o zvyškoch. Urobili sme dva dôkazy čínskej vety o zvyškoch a ukázali sme si aj konkrétny príklad.

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Nov 11, 2021 2:32 pm
by Martin Sleziak
8. prednáška (11.11.):
Aritmetické funkcie. Multiplikatívne a úplne multiplikatívne funkcie - definícia, základné vlastnosti. Ak $f$ je multiplikatívna, tak aj $g(n)=\sum\limits_{d\mid n} f(d)$ je multiplikatívna. (V dôkaze sme využili lemu 2.1.14, ktorú som pri prednášaní prvej kapitoly preskočil. Zdôvodnil som ju iba pomocou kanonického rozkladu - ak niekedy zvýši čas, tak sa vrátim k dôkazu, ktorý sa neopiera o kanonický rozklad.)
Funkcie $d(n)$ a $\sigma(n)$. Vyjadrenie týchto funkcií z kanonického rozkladu. Charakterizácia párnych dokonalých čísel. (Nerobil som časť o nepárnych dokonalých číslach. Takisto ani to, ako sa $d(n)$ a $\sigma(n)$ funkcie správajú pre veľké $n$.)
Eulerova funkcia. Zadefinovali sme Eulerovu funkciu $\varphi(n)$ a dokázali, že je multiplikatívna.

Re: Prednášky ZS 2021/22 - teória čísel

Posted: Thu Nov 18, 2021 2:02 pm
by Martin Sleziak
9. prednáška (18.11.):
Eulerova funkcia. Vyjadrenie Eulerovej funkcie na základe kanonického rozkladu: $\varphi(n)=\prod_{i=1}^k \left(p_i^{\alpha_i}-p_i^{\alpha_i-1}\right) = n \prod_{p\mid n} \left(1-\frac1p\right)$.
Malá Fermatova veta. Ukázali sme si dva dôkazy malej Fermatovej vety. (Kombinatorický dôkaz a induktívny dôkaz pomocou binomickej vety.) Viacero dôkazov tejto vety je pozbieraných aj na Wikipédii: Proofs of Fermat's little theorem.
Eulerova veta. Urobili sme dva dôkazy Eulerovej vety. (Urobil som dôkaz založený na grupe redukovaných zvyškových tried.)
Ešte Eulerova funkcia. Dokázali sme (dvoma spôsobmi) identitu $n=\sum\limits_{d\mid n}\varphi(d)$.
Lagrangeova veta. Sformulovali sme Lagrangeovu vetu a ukázali, že vlastne vyplýva z toho, čo vieme o počte koreňov polynómu v poli: https://msleziak.com/forum/viewtopic.php?t=1349#p4076
Wilsonova veta. Ukázali sme Wilsonovu vetu - jeden dôkaz bol založený na Lagrangeovej vete, druhý využíval multiplikatívnu grupu poľa $\mathbb Z_p$. (Nerobil som kombinatorický dôkaz.)