Stopa matice ortogonálnej projekcie sa rovná dimenzii
Posted: Thu Mar 10, 2022 2:28 pm
Tvrdenie.$\newcommand{\Tra}{\operatorname{Tr}}
\newcommand{\inv}[1]{{#1}^{-1}}$ Ak $P$ je matica ortogonálnej projekcie na podpriestor $S$ (v $\mathbb R^n$ so štandardným skalárnym súčinom), tak platí
$$\Tra(P)=\dim(S).$$
Pripomeňme, že $\Tra(P)$ označuje stopu matice $P$, t.j. $\Tra(P)=p_{11}+p_{22}+\dots+p_{nn}$.
Takéto tvrdenie sme spomenuli na cvičení - pri výpočte matice projekcie to je vec, ktorú vieme skontrolovať ľahko. (A ak to nesedí, vieme, že treba hľadať chybu.)
V skutočnosti platí dokonca aj silnejšie tvrdenie - pre každú reálnu (dokonca aj komplexnú) maticu $n\times n$ takú, že $P^2=P$ platí $\Tra(P)=h(P)$.
Niečo o tomto tvrdení sa dá nájsť tu: viewtopic.php?t=1799
Na tomto mieste sa ale zatiaľ pozrime iba na takéto menej všeobecné tvrdenie - že to platí pre maticu ortogonálnej projekcie.
\newcommand{\inv}[1]{{#1}^{-1}}$ Ak $P$ je matica ortogonálnej projekcie na podpriestor $S$ (v $\mathbb R^n$ so štandardným skalárnym súčinom), tak platí
$$\Tra(P)=\dim(S).$$
Pripomeňme, že $\Tra(P)$ označuje stopu matice $P$, t.j. $\Tra(P)=p_{11}+p_{22}+\dots+p_{nn}$.
Takéto tvrdenie sme spomenuli na cvičení - pri výpočte matice projekcie to je vec, ktorú vieme skontrolovať ľahko. (A ak to nesedí, vieme, že treba hľadať chybu.)
V skutočnosti platí dokonca aj silnejšie tvrdenie - pre každú reálnu (dokonca aj komplexnú) maticu $n\times n$ takú, že $P^2=P$ platí $\Tra(P)=h(P)$.
Niečo o tomto tvrdení sa dá nájsť tu: viewtopic.php?t=1799
Na tomto mieste sa ale zatiaľ pozrime iba na takéto menej všeobecné tvrdenie - že to platí pre maticu ortogonálnej projekcie.