Latex - mnoziny, mnozinove operacie
Posted: Fri Mar 16, 2012 8:28 pm
Pri mnozinovych zatvorkach treba pouzivat backslash. Patri sa oznacuje \in
$\{x\cdot y; y\in H\}$, $\mathbb N=\{0,1,2,3,\dots\}$
Podmnozina
$A\subset B$, $A\subseteq B$, $A\subsetneq B$
Zakladne operacie s mnozinami
$A\cup B$, $A\cap B$ $A\setminus B$
Zjednotenie a prienik mozeme robit aj so sytemami mnozin:
$\bigcup_{i=1}^\infty \bigcap_{j=1}^\infty A_{ij}$
Pokial chceme rozsah nad a pod znak prieniku a zjednotenia
$\bigcup\limits_{i=1}^\infty \bigcap\limits_{j=1}^\infty A_{ij}$
Na uzavrete intervaly sa pouziva langle rangle, nie < a >. (Niektori ludia preferuju hranate zatvorky na oznacenie intervalu - $[0,1]$
$(0,1)\subseteq (0,1\rangle \subseteq \langle 0,1\rangle$
V suvislosti s mnozinami (napriklad pri definiciach mnozinovych operacii), sa vyskytuju aj kvantifikatory a logicke spojky; tie najdete tu.
Pri oznacovani kardinality sa stretnete s pismenom alef:
$\aleph_0 < \aleph_1 \le 2^{\aleph_0}$
Alebo tiez s kardinalitou kontinua:
$2^{\aleph_0}=\mathfrak c$
$\{x\cdot y; y\in H\}$, $\mathbb N=\{0,1,2,3,\dots\}$
Code: Select all
\{x\cdot y; y\in H\}, \mathbb N=\{0,1,2,3,\dots\}
$A\subset B$, $A\subseteq B$, $A\subsetneq B$
Code: Select all
A\subset B, A\subseteq B, A\subsetneq B
$A\cup B$, $A\cap B$ $A\setminus B$
Code: Select all
A\cup B, A\cap B A\setminus B
$\bigcup_{i=1}^\infty \bigcap_{j=1}^\infty A_{ij}$
Code: Select all
\bigcup_{i=1}^\infty \bigcap_{j=1}^\infty A_{ij}
$\bigcup\limits_{i=1}^\infty \bigcap\limits_{j=1}^\infty A_{ij}$
Code: Select all
\bigcup\limits_{i=1}^\infty \bigcap\limits_{j=1}^\infty A_{ij}
$(0,1)\subseteq (0,1\rangle \subseteq \langle 0,1\rangle$
Code: Select all
(0,1)\subseteq (0,1\rangle \subseteq \langle 0,1\rangle
Pri oznacovani kardinality sa stretnete s pismenom alef:
$\aleph_0 < \aleph_1 \le 2^{\aleph_0}$
Code: Select all
\aleph_0 < \aleph_1 \le 2^{\aleph_0}
$2^{\aleph_0}=\mathfrak c$
Code: Select all
$2^{\aleph_0}=\mathfrak c$