LateX - teoria cisel
Posted: Thu Aug 09, 2012 8:43 am
Veci ktore sa casto vyskytnu v teorii cisel:
Delitelnost
$3 \mid 9$, $3 \nmid 7$
Kongruencie
$x^2 \equiv y^2 \equiv 1 \pmod n, n \equiv 0 \pmod{pq}$
Sustava kongruencii sa da zapisat takto:
$$
x \equiv 1 \pmod 2\\
x \equiv 1 \pmod 3
$$
Poznamka: Na rozdiel od MathJaxu, v LaTeXu na formulu ktora ma viac riadkov budete musiet pouzit niektory vhodny environment. Ak chcete sustavu pekne zarovnat, pozrite sa na post o zarovnavani.
Rozne symboly
Binomicke koeficienty
$\binom np$, $\binom{n}{i+k}$
Jacobiho symbol
$\left(\frac{-1}{5}\right)=1$
Delitelnost
$3 \mid 9$, $3 \nmid 7$
Code: Select all
3 \mid 9, 3 \nmid 7
$x^2 \equiv y^2 \equiv 1 \pmod n, n \equiv 0 \pmod{pq}$
Code: Select all
x^2 \equiv y^2 \equiv 1 \pmod n, n \equiv 0 \pmod{pq}
$$
x \equiv 1 \pmod 2\\
x \equiv 1 \pmod 3
$$
Code: Select all
x \equiv 1 \pmod 2\\
x \equiv 1 \pmod 3
Rozne symboly
Binomicke koeficienty
$\binom np$, $\binom{n}{i+k}$
Code: Select all
\binom np, \binom{n}{i+k}
$\left(\frac{-1}{5}\right)=1$
Code: Select all
\left(\frac{-1}{5}\right)=1