Nájdite ortonormálnu bázu priestoru $S=[(2,1,1,3),(0,1,−1,1),(1,0,1,1)]$. (Pracujeme v ℝ4 so štandardným skalárnym súčinom.)
$S=[(2,1,1,3),(0,1,-1,1),(1,0,1,1)]$ upravime riadkovymi upravami na $ [(1,0,1,1),(0,1,-1,1)]$
a teda
$\alpha_1 = (1,0,1,1)$
$\alpha_2 = (0,1,-1,1)$
pomocou gram-schmidta
$\gamma_1 = \alpha_1 = (1,0,1,1)$
$\gamma_2 = \alpha_2 + c\gamma_1 = (0,1,-1,1) + c(1,0,1,1) = (c,1,c-1,c+1)$
aby boli kolme musi platit $\langle \gamma_1,\gamma_2 \rangle = 0 = c + (c - 1) + (c + 1) = 3c$
Po upravach potom dostaneme $c = 0$ a $\gamma_2 = (0,1,-1,1)$
Ziskali sme teda ortogonalnu bazu $[\gamma_1,\gamma_2]$
Nakoniec ju znormujeme, aby sme ziskali ortonormalnu bazu $S_o = [\beta_1,\beta_2]$, kde $\frac{\gamma_i}{|\gamma_i|} = \beta_i$, pre $i=1,2$.
A teda$$\beta_1 = \frac{\gamma_1}{\sqrt{\langle(1,0,1,1),(1,0,1,1)\rangle}} = \frac{\gamma_1}{\sqrt{3}}$$
$$\beta_2 = \frac{\gamma_2}{\sqrt{3}}$$
Dostavame teda ortonormalnu bazu $S_{ort} = \left[ (\frac{1}{\sqrt{3}},0,\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}), (0,\frac{1}{\sqrt{3}},\frac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}})\right]$
Úloha 2.2. Nájdite ortonormálnu bázu priestoru S
Moderators: Martin Sleziak, TomasRusin, Veronika Lackova, davidwilsch, jaroslav.gurican, Ludovit_Balko
-
- Posts: 5686
- Joined: Mon Jan 02, 2012 5:25 pm
Re: Úloha 2.2. Nájdite ortonormálnu bázu priestoru S
Riešenie je ok, značím si 1 bod.
Inak povedané, chceli sme zmeniť $\vec\alpha_2$ tak, aby bol nový vektor kolmý na $\vec\alpha_1$. Ak boli kolmé už pôvodne, tak ho nemusíme meniť.
Pridám linku na riešenie z minula, aj keď je v podstate rovnaké: viewtopic.php?t=193
Môžeme si všimnúť, že $c=0$ nám vyšlo vďaka tomu, že $\vec\alpha_1$, $\vec\alpha_2$ boli na seba kolmé.kovacs39 wrote:aby boli kolme musi platit $\langle \gamma_1,\gamma_2 \rangle = 0 = c + (c - 1) + (c + 1) = 3c$
Po upravach potom dostaneme $c = 0$ a $\gamma_2 = (0,1,-1,1)$
Inak povedané, chceli sme zmeniť $\vec\alpha_2$ tak, aby bol nový vektor kolmý na $\vec\alpha_1$. Ak boli kolmé už pôvodne, tak ho nemusíme meniť.
Pridám linku na riešenie z minula, aj keď je v podstate rovnaké: viewtopic.php?t=193