Re: Prednášky ZS 2021/22 - algebra
Posted: Mon Nov 29, 2021 11:02 am
11. týždeň (29.11.):
Inverzná matica. Inverzné zobrazenie k lineárnej bijekcii je opäť lineárne. Definícia inverznej matice. K matici A existuje inverzná práve vtedy, keď A je regulárna matica.
Izomorfizmus vektorových priestorov. Zadefinovali sme pojem izomorfizmu vektorových priestorov a ukázali sme, že každý konečnorozmerný vektorový priestor nad poľom $F$ je izomorfný s $F^n$ pre nejaké $n$.
Chvíľu som hovoril niečo o tom, že izomorfizmus vlastne hovorí o tom, že dva vektorové priestory sú "v podstate rovnaké".
Niečo podobné si môžete prečítať tu: viewtopic.php?t=495
(Izomorfizmus sme pre grupy nedefinovali; ale princíp je podobný.)
Ešte som na konci spomenul veci ako: $(AB)^{-1}=B^{-1}A^{-1}$, $(A^{-1})^{-1}=A$, $(AB)^T=B^TA^T$, $(A^{-1})^T=(A^T)^{-1}$. (Dokázali sme z nich iba prvú rovnosť.)
Na prednáške nebudem robiť podkapitolu "elementárne riadkové operácie a súčin matíc". Nebudem z nej skúšať dôkazy - ale vedieť o súvise medzi súčinom a ERO sa oplatí. (A budete takéto niečo vidieť na cvičeniach.)
V súvislosti s tým som spomenul, že na súčin matíc sa dá pozerať aj takto: V matici $AB$ budú lineárne kombinácie riadkov matice $B$. Matica $A$ nám vlastne hovorí, aké koeficienty mám použiť v týchto lineárnych kombináciách.
Sústavy lineárnych rovníc. Zadefinovali sme základné pojmy a ukázali si maticový zápis sústavy. Množina riešení sa nemení pri elementárnych riadkových operáciách. (Dôkaz som povedal pomerne stručne, ale ukázal som ešte jeden dôkaz založený na vzťahu riadkových operácií a násobenia matíc.)
Homogénne sústavy. Množina riešení homogénnej sústavy tvorí podpriestor. Ukázali sme si, ako vyzerá báza priestoru riešení. (Na jej základe dostaneme to, že jeho dimenzia je $n-h(A)$; s tým začneme nabudúce.)
Veci, ktoré som počas prednášky písal: https://msleziak.com/vyuka/2021/alg/20211129inver.pdf a https://msleziak.com/vyuka/2021/alg/20211129sust.pdf
Inverzná matica. Inverzné zobrazenie k lineárnej bijekcii je opäť lineárne. Definícia inverznej matice. K matici A existuje inverzná práve vtedy, keď A je regulárna matica.
Izomorfizmus vektorových priestorov. Zadefinovali sme pojem izomorfizmu vektorových priestorov a ukázali sme, že každý konečnorozmerný vektorový priestor nad poľom $F$ je izomorfný s $F^n$ pre nejaké $n$.
Chvíľu som hovoril niečo o tom, že izomorfizmus vlastne hovorí o tom, že dva vektorové priestory sú "v podstate rovnaké".
Niečo podobné si môžete prečítať tu: viewtopic.php?t=495
(Izomorfizmus sme pre grupy nedefinovali; ale princíp je podobný.)
Ešte som na konci spomenul veci ako: $(AB)^{-1}=B^{-1}A^{-1}$, $(A^{-1})^{-1}=A$, $(AB)^T=B^TA^T$, $(A^{-1})^T=(A^T)^{-1}$. (Dokázali sme z nich iba prvú rovnosť.)
Na prednáške nebudem robiť podkapitolu "elementárne riadkové operácie a súčin matíc". Nebudem z nej skúšať dôkazy - ale vedieť o súvise medzi súčinom a ERO sa oplatí. (A budete takéto niečo vidieť na cvičeniach.)
V súvislosti s tým som spomenul, že na súčin matíc sa dá pozerať aj takto: V matici $AB$ budú lineárne kombinácie riadkov matice $B$. Matica $A$ nám vlastne hovorí, aké koeficienty mám použiť v týchto lineárnych kombináciách.
Sústavy lineárnych rovníc. Zadefinovali sme základné pojmy a ukázali si maticový zápis sústavy. Množina riešení sa nemení pri elementárnych riadkových operáciách. (Dôkaz som povedal pomerne stručne, ale ukázal som ešte jeden dôkaz založený na vzťahu riadkových operácií a násobenia matíc.)
Homogénne sústavy. Množina riešení homogénnej sústavy tvorí podpriestor. Ukázali sme si, ako vyzerá báza priestoru riešení. (Na jej základe dostaneme to, že jeho dimenzia je $n-h(A)$; s tým začneme nabudúce.)
Veci, ktoré som počas prednášky písal: https://msleziak.com/vyuka/2021/alg/20211129inver.pdf a https://msleziak.com/vyuka/2021/alg/20211129sust.pdf